skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 5, 2026

Title: Synthetic and Mechanistic Evaluation of Palladium(II) Bis(Arylazoformamide) Precatalysts in the Sonogashira Reaction
The palladium-catalyzed sp-sp2 C−C bond forming the Sonogashira reaction has been both extensively studied mechanistically and widely used in organic synthesis. Herein, we describe an investigation into how a palladium(II) complex with arylazoformamide (AAF) ligands mediates these transformations. When mixed, two AAFs coordinate in a κ1-fashion with an equivalent of PdCl2, creating complexes of the form PdCl2(AAF)2. Under typical and optimized copper(I)-cocatalyzed Sonogashira conditions, using phenylacetylene and iodobenzene as reagents, these complexes (precatalysts) reduce to Pd(0) and afford the coupled diphenylacetylene product in high yields (i.e., 99%). A substrate scope explored the substitution on both rings, yielding 18 examples with yields varying from 38 to 99%. Mechanistically, from DFT studies, a formal Pd(I) open-shell singlet complex is suggested, along with an explanation of the need for DBU when employing CuI in toluene. Further DFT exploration provides insight into the copper-free Sonogashira reaction when utilizing Pd(AAF)2 complexes.  more » « less
Award ID(s):
2350243 2350244
PAR ID:
10615113
Author(s) / Creator(s):
; ; ;
Editor(s):
Fey, Natalie; Chirik, Paul
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Organometallics
ISSN:
0276-7333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have developed an efficient method to generate highly active nickel–palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni–Pd/MWCNTs) by dry mixing of the nickel and palladium salts utilizing the mechanical energy of a ball-mill. These nanoparticles were successfully employed in Sonogashira cross-coupling reactions with a wide array of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using a Monowave 50 heating reactor. Notably, the concentration of palladium can be lowered to a minimum amount of 0.81% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The remarkable reactivity of the Ni–Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni–Pd nanoparticles with small particle size of 5–10 nm due to an efficient grinding method. The catalyst was easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be reduced to a minimum amount of 0.01 mol% while still providing a high conversion of the Sonogashira product with a remarkable turnover number (TON) of 7200 and turnover frequency (TOF) of 21 600 h −1 . The catalyst was fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). 
    more » « less
  2. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) were prepared by dry mixing of the nickel and palladium salts using the mechanical energy of a ball-mill. These nanoparticles demonstrated remarkable catalytic activity in Sonogashira cross-coupling reactions with a wide range of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using Monowave 50 heating reactor. The catalyst is air-stable and can be easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be lowered to a minimum amount of 0.01 mol%while still providing a high conversion of the Sonogashira product with an excellent turnover number (TON) of 7200 and turnover frequency (TOF) of 21600 h. The Ni-Pd/MWCNTs nanoparticles were fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy (XPS). The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pdnanoparticles with small particle size of 5-10 nm due to an efficient grinding method. This work provides a facile, solventless and inexpensive method for large-scale preparation of Ni-Pd/MWCNTs to accomplish often-challenging Sonogashira cross coupling reactions. 
    more » « less
  3. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) were prepared by dry mixing of the nickel and palladium salts using the mechanical energy of a ball-mill. These nanoparticles demonstrated remarkable catalytic activity in Sonogashira cross-coupling reactions with a wide range of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using Monowave 50 heating reactor. The catalyst is air-stable and can be easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be lowered to a minimum amount of 0.01 mol%while still providing a high conversion of the Sonogashira product with an excellent turnover number (TON) of 7200 and turnover frequency (TOF) of 21600 h. The Ni-Pd/MWCNTs nanoparticles were fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy (XPS). The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pdnanoparticles with small particle size of 5-10 nm due to an efficient grinding method. This work provides a facile, solventless and inexpensive method for large-scale preparation of Ni-Pd/MWCNTs to accomplish often-challenging Sonogashira cross-coupling reactions. 
    more » « less
  4. Sonogashira cross coupling reactions have a wide range of applications in pharmaceutical industry for drug discovery and organic synthesis of natural products and pharmaceutical compounds. These reactions typically involve the coupling of aryl halides with terminal alkynes in the presence of palladium catalyst under appropriate reaction conditions. Most Sonogashira reactions have been carried out with homogeneous Pd catalysis, in which the catalyst is soluble in the reaction mixture. There are many disadvantages to this method including the difficulty to remove the catalyst from the sample and recyclability. Heterogeneous catalysis is an alternative approach to address the issues associated with homogeneous system mainly due to facile and clean removal of the catalyst and minimum metal residual contamination. Herein, we report the preparation of nickel-palladium nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) as an effective heterogeneous catalyst for Sonogashira coupling reactions. The catalyst was prepared by mixing the appropriate ratio of nickel-palladium salts with multi-walled carbon nanotubes using a mechanical power of a ball mill. The nanoparticles prepared by this method were successfully used to catalyze Sonogashira coupling reactions of various substituted aryl halides and terminal alkynes using an equal amount of water and ethanol as an environmentally benign solvent system. This project provides a facile and effective method for largescale preparation of Ni-Pd/MWCNTs to catalyze Sonogashira cross-coupling reactions. The recyclability of the catalyst makes this an affordable and clean option for pharmaceutical and industrial applications. 
    more » « less
  5. null (Ed.)
    Palladium(II)-catalyzed C–H oxidation reactions could streamline the synthesis of pharmaceuticals, agrochemicals, and other complex organic molecules. Existing methods, however, commonly exhibit poor catalyst performance with high Pd loading (e.g., 10 mol %) and a need for (super)stoichiometric quantities of undesirable oxidants, such as benzoquinone and silver(I) salts. The present study probes the mechanism of a representative Pd-catalyzed oxidative C–H arylation reaction and elucidates mechanistic features that undermine catalyst performance, including substrate-consuming side reactions and sequestration of the catalyst as inactive species. Systematic tuning of the quinone co-catalyst overcomes these deleterious features. Use of 2,5-di- tert -butyl- p -benzoquinone enables efficient use of molecular oxygen as the oxidant, high reaction yields, and >1900 turnovers by the palladium catalyst. 
    more » « less