skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Visual Science Communication Toolkit: Responding to the Need for Visual Science Communication Training in Undergraduate Life Sciences Education
Visual representations are essential to scientific research and teaching, playing a role in conceptual understanding, knowledge generation, and the communication of discovery and change. Undergraduate students are expected to interpret, use, and create visual representations so they can make their thinking explicit when engaging in discourse with the scientific community. Despite the importance of visualization in the biosciences, students often learn visualization skills in an ad hoc fashion without a clear framework. We used a mixed-methods sequential explanatory study design to explore and assess the pedagogical needs of undergraduate biology students (n = 53), instructors (n = 13), and teaching assistants (n = 8) in visual science communication education. Key themes were identified using inductive grounded theory methods. We found that extrinsic motivations, namely time, financial resources, and grading practices, contribute to a lack of guidance, support, and structure as well as ambiguous expectations and standards perceived by students and instructors. Biology and science visualization instructors cite visual communication assessments as a way of developing and evaluating students’ higher-order thinking skills in addition to their communication competencies. An output of this research, the development of a learning module, the Visual Science Communication Toolkit, is discussed along with design considerations for developing resources for visual science communication education.  more » « less
Award ID(s):
1827249
PAR ID:
10615203
Author(s) / Creator(s):
;
Editor(s):
Vergara, D; Jeronen, E
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Education Sciences
Edition / Version:
1
Volume:
14
Issue:
3
ISSN:
2227-7102
Page Range / eLocation ID:
296
Subject(s) / Keyword(s):
visual science communication undergraduate biology design education visual literacy visual representation interactive learning module
Format(s):
Medium: X Size: 2.8MB Other: pdf
Size(s):
2.8MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Wessner, David R (Ed.)
    Visual models are a necessary part of molecular biology education because submicroscopic compounds and processes cannot be directly observed. Accurately interpreting the biological information conveyed by the shapes and symbols in these visual models requires engaging visual literacy skills. For students to develop expertise in molecular biology visual literacy, they need to have structured experiences using and creating visual models, but there is little evidence to gauge how often undergraduate biology students are provided such opportunities. To investigate students’ visual literacy experiences, we surveyed 66 instructors who taught lower division undergraduate biology courses with a focus on molecular biology concepts. We collected self-reported data about the frequency with which the instructors teach with visual models and we analyzed course exams to determine how instructors incorporated visual models into their assessments. We found that most instructors reported teaching with models in their courses, yet only 16% of exam items in the sample contained a visual model. There was not a statistically significant relationship between instructors’ self-reported frequency of teaching with models and extent to which their exams contained models, signaling a potential mismatch between teaching and assessment practices. Although exam items containing models have the potential to elicit higher-order cognitive skills through model-based reasoning, we found that when instructors included visual models in their exams the majority of the items only targeted the lower-order cognitive skills of Bloom’s Taxonomy. Together, our findings highlight that despite the importance of visual models in molecular biology, students may not often have opportunities to demonstrate their understanding of these models on assessments. 
    more » « less
  2. Societal Impact StatementThe practice of writing science blogs benefits both the scientist and society alike by providing professional development opportunities and delivering information in a format that is accessible to large and diverse audiences. By designing a project that introduced upper‐level undergraduate students to science blog writing with a focus on plant biology, we piqued students' interest in science writing and the content of a popular plant science blog website. If adopted more widely, this work could broaden the scope of science education and promote the development of effective science communication skills for the next generation of scientists. SummarySuccessful scientists must communicate their research to broad audiences, including distilling key scientific concepts for the general public. Students pursuing careers in Science, Technology, Engineering, and Mathematics (STEM) fields benefit from developing public communication skills early in their careers, but opportunities are limited in traditional biology curricula.We created the “Plant Science Blogging Project” for a Plant Biology undergraduate course at the University of Pittsburgh in Fall 2018 and 2019. Students wrote blog posts merging personal connections with plants with plant biology concepts for the popular science blogsPlant Love StoriesandEvoBites. By weaving biology into their narratives, students learned how to share botanical knowledge with the general public.The project had positive impacts on student learning and public engagement. In post‐assignment surveys, the majority of students reported that they enjoyed the assignment, felt it improved their understanding of plant biology, and piqued their interest in reading and writing science blogs in the future. Approximately one‐third of the student‐authored blogs were published, including two that rose to the top 10 most‐read posts on Plant Love Stories. Some dominant themes in student blogs, including medicine and culture, differed from common story themes published on the web, indicating the potential for students to diversify science blog content.Overall, the Plant Science Blogging Project allows undergraduate students to engage with plant biology topics in a new way, sharpen their scientific communication skills in accordance with today's world of mass information sharing, and contribute to the spread of scientific knowledge for public benefit. 
    more » « less
  3. null (Ed.)
    The promotion of global sustainability within environmental science courses requires a paradigm switch from knowledge-based teaching to teaching that stimulates higher-order cognitive skills. Non-major undergraduate science courses, such as environmental science, promote critical thinking in students in order to improve the uptake of scientific information and develop the rational decision making used to make more informed decisions. Science, engineering, technology and mathematics (STEM) courses rely extensively on visuals in lectures, readings and homework to improve knowledge. However, undergraduate students do not automatically acquire visual literacy and a lack of intervention from instructors could be limiting academic success. In this study, a visual literacy intervention was developed and tested in the face-to-face (FTF) and online sections of an undergraduate non-major Introduction to Environmental Science course. The intervention was designed to test and improve visual literacy at three levels: (1) elementary—identifying values; (2) intermediate—identifying trends; and (3) advanced—using the data to make projections or conclusions. Students demonstrated a significant difference in their ability to answer elementary and advanced visual literacy questions in both course sections in the pre-test and post-test. Students in the face-to-face course had significantly higher exam scores and higher median assessment scores compared to sections without a visual literacy intervention. The online section did not show significant improvements in visual literacy or academic success due to a lack of reinforcement of visual literacy following the initial intervention. The visual literacy intervention shows promising results in improving student academic success and should be considered for implementation in other general education STEM courses. 
    more » « less
  4. Abstract There is a clear demand for quantitative literacy in the life sciences, necessitating competent instructors in higher education. However, not all instructors are versed in data science skills or research-based teaching practices. We surveyed biological and environmental science instructors (n = 106) about the teaching of data science in higher education, identifying instructor needs and illuminating barriers to instruction. Our results indicate that instructors use, teach, and view data management, analysis, and visualization as important data science skills. Coding, modeling, and reproducibility were less valued by the instructors, although this differed according to institution type and career stage. The greatest barriers were instructor and student background and space in the curriculum. The instructors were most interested in training on how to teach coding and data analysis. Our study provides an important window into how data science is taught in higher education biology programs and how we can best move forward to empower instructors across disciplines. 
    more » « less
  5. Jodie Jenkinson, Susan Keen (Ed.)
    While visual literacy has been identified as a foundational skill in life science education, there are many challenges in teaching and assessing biomolecular visualization skills. Among these are the lack of consensus about what constitutes competence and limited understanding of student and instructor perceptions of visual literacy tasks. In this study, we administered a set of biomolecular visualization assessments, developed as part of the BioMolViz project, to both students and instructors at multiple institutions and compared their perceptions of task difficulty. We then analyzed our findings using a mixed-methods approach. Quantitative analysis was used to answer the following research questions: (1) Which assessment items exhibit statistically significant disparities or agreements in perceptions of difficulty between instructors and students? (2) Do these perceptions persist when controlling for race/ethnicity and gender? and (3) How does student perception of difficulty relate to performance? Qualitative analysis of open-ended comments was used to identify predominant themes related to visual problem solving. The results show that perceptions of difficulty significantly differ between students and instructors and that students’ performance is a significant predictor of their perception of difficulty. Overall, this study underscores the need to incorporate deliberate instruction in visualization into undergraduate life science curricula to improve student ability in this area. Accordingly, we offer recommendations to promote visual literacy skills in the classroom. 
    more » « less