Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .
more »
« less
This content will become publicly available on April 1, 2026
The weight hierarchy of decreasing norm-trace codes
Abstract The Generalized Hamming weights and their relative version, which generalize the minimum distance of a linear code, are relevant to numerous applications, including coding on the wire-tap channel of type II,t-resilient functions, bounding the cardinality of the output in list decoding algorithms, ramp secret sharing schemes, and quantum error correction. The generalized Hamming weights have been determined for some families of codes, including Cartesian codes and Hermitian one-point codes. In this paper, we determine the generalized Hamming weights of decreasing norm-trace codes, which are linear codes defined by evaluating sets of monomials that are closed under divisibility on the rational points of the extended norm-trace curve given by$$x^{u} = y^{q^{s - 1}} + y^{q^{s - 2}} + \cdots + y$$ over the finite field of cardinality$$q^s$$ , whereuis a positive divisor of$$\frac{q^s - 1}{q - 1}$$ . As a particular case, we obtain the weight hierarchy of one-point norm-trace codes and recover the result of Barbero and Munuera (2001) giving the weight hierarchy of one-point Hermitian codes. We also study the relative generalized Hamming weights for these codes and use them to construct impure quantum codes with excellent parameters.
more »
« less
- PAR ID:
- 10615684
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Designs, Codes and Cryptography
- ISSN:
- 0925-1022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We extend the Calderón–Zygmund theory for nonlocal equations tostrongly coupled system of linear nonlocal equations {\mathcal{L}^{s}_{A}u=f}, where the operator {\mathcal{L}^{s}_{A}}is formally given by \mathcal{L}^{s}_{A}u=\int_{\mathbb{R}^{n}}\frac{A(x,y)}{|x-y|^{n+2s}}\frac{(x-%y)\otimes(x-y)}{|x-y|^{2}}(u(x)-u(y))\,dy. For {0more » « less
<1}and {A:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}}taken to be symmetric and serving asa variable coefficient for the operator, the system under consideration is the fractional version of the classical Navier–Lamé linearized elasticity system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal mechanics, primarily in peridynamics. Our regularity result states that if {A(\,\cdot\,,y)}is uniformly Holder continuous and {\inf_{x\in\mathbb{R}^{n}}A(x,x)>0}, then for {f\in L^{p}_{\rm loc}}, for {p\geq 2}, the solution vector {u\in H^{2s-\delta,p}_{\rm loc}}for some {\delta\in(0,s)}. -
Abstract Datta and Johnsen (Des Codes Cryptogr 91:747–761, 2023) introduced a new family of evaluation codes in an affine space of dimension$$\ge 2$$ over a finite field$${\mathbb {F}}_q$$ where linear combinations of elementary symmetric polynomials are evaluated on the set of all points with pairwise distinct coordinates. In this paper, we propose a generalization by taking low dimensional linear systems of symmetric polynomials. Computation for small values of$$q=7,9$$ shows that carefully chosen generalized Datta–Johnsen codes$$\left[ \frac{1}{2}q(q-1),3,d\right] $$ have minimum distancedequal to the optimal value minus 1.more » « less
-
Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author.more » « less
-
Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ in$$U\subset \mathbf {R}^{2+n}$$ with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ , where$$Q\in \mathbf {N} \setminus \{0\}$$ and$$\Gamma $$ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ is a point where the density of$$T$$ is strictly below$$\frac{Q+1}{2}$$ , then the current is regular at$$q$$ . The regularity is understood in the following sense: there is a neighborhood of$$q$$ in which$$T$$ consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ is regular in a neighborhood of $$\Gamma $$ .more » « less
An official website of the United States government
