skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric Moisture Decreases Midlatitude Eddy Kinetic Energy
Abstract There is compelling evidence that atmospheric moisture may either increase or decrease midlatitude eddy kinetic energy (EKE). We reconcile these findings by using a hierarchy of idealized atmospheric models to demonstrate that moisture energizes individual eddies given fixed large-scale background winds and temperatures but makes those background conditions less favorable for eddy growth. For climates similar to the present day, the latter effect wins out, and moisture weakens midlatitude eddy activity. The model hierarchy includes a moist two-layer quasigeostrophic (QG) model and an idealized moist general circulation model (GCM). In the QG model, EKE increases when moisture is added to simulations with fixed baroclinicity, closely following a previously derived scaling. But in both models, moisture decreases EKE when environmental conditions are allowed to vary. We explain these results by examining the models’ mean available potential energy (MAPE) and by calculating terms in the models’ Lorenz energy cycles. In the QG model, the EKE decreases because precipitation preferentially forms on the poleward side of the jet, releasing latent heat where the model is relatively cold and decreasing the MAPE, hence the EKE. In the moist GCM, the MAPE primarily decreases because the midlatitude stability increases as the model is moistened, with reduced meridional temperature gradients playing a secondary role. Together, these results clarify moisture’s role in driving the midlatitude circulation and also highlight several drawbacks of QG models for studying moist processes in midlatitudes. Significance StatementDry models of the atmosphere have played a central role in the study of large-scale atmospheric dynamics. But we know that moisture adds much complexity, associated with phase changes, its effect on atmospheric stability, and the release of latent heat during condensation. Here, we take an important step toward incorporating moisture into our understanding of midlatitude dynamics by reconciling two diverging lines of literature, which suggest that atmospheric moisture can either increase or decrease midlatitude eddy kinetic energy. We explain these opposing results by showing that moisture not only makes individual eddies more energetic but also makes the environment in which eddies form less favorable for eddy growth. For climates similar to the present day, the latter effect wins out such that moisture decreases atmospheric eddy kinetic energy. We demonstrate this point using several different idealized atmospheric models, which allow us to gradually add complexity and to smoothly vary between moist and dry climates. These results add fundamental understanding to how moisture affects midlatitude climates, including how its effects change in warmer and moisture climates, while also highlighting some drawbacks of the idealized atmospheric models.  more » « less
Award ID(s):
2202991
PAR ID:
10615763
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
81
Issue:
11
ISSN:
0022-4928
Page Range / eLocation ID:
1817 to 1832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The circulation of the Northern Hemisphere extratropical troposphere has changed over recent decades, with marked decreases in extratropical cyclone activity and eddy kinetic energy (EKE) in summer and increases in the fraction of precipitation that is convective in all seasons. Decreasing EKE in summer is partly explained by a weakening meridional temperature gradient, but changes in vertical temperature gradients and increasing moisture also affect the mean available potential energy (MAPE), which is the energetic reservoir from which extratropical cyclones draw. Furthermore, the relation of changes in mean thermal structure and moisture to changes in convection associated with extratropical cyclones is poorly understood. Here we calculate trends in MAPE for the Northern extratropics in summer over the years 1979–2017, and we decompose MAPE into both convective and nonconvective components. Nonconvective MAPE decreased over this period, consistent with decreases in EKE and extratropical cyclone activity, but convective MAPE increased, implying an increase in the energy available to convection. Calculations with idealized atmospheres indicate that nonconvective and convective MAPE both increase with increasing mean surface temperature and decrease with decreasing meridional surface temperature gradient, but convective MAPE is relatively more sensitive to the increase in mean surface temperature. These results connect changes in the atmospheric mean state with changes in both large-scale and convective circulations, and they suggest that extratropical cyclones can weaken even as their associated convection becomes more energetic. 
    more » « less
  2. Abstract The midlatitude poleward atmospheric energy transport increases in radiatively forced simulations of warmed climates across a range of models from comprehensive coupled general circulation models (GCMs) to idealized aquaplanet moist GCMs to diffusive moist energy balance models. These increases have been rationalized from two perspectives. The energetic (or radiative) perspective takes the atmospheric energy budget and decomposes energy flux changes (radiative forcing, feedbacks, or surface fluxes) to determine the energy transport changes required by the budget. The diffusive perspective takes the net effect of atmospheric macroturbulence to be a diffusive energy transport down-gradient, so transport changes can arise from changes in mean energy gradients or turbulent diffusivity. Here, we compare these perspectives in idealized moist, gray-radiation GCM simulations over a wide range of climates. The energetic perspective has a dominant role for radiative forcing in this GCM, with cancellation between the temperature feedback components that account for the GCM’s nonmonotonic energy transport changes in response to warming. Comprehensive CMIP5 simulations have similarities in the Northern Hemisphere to the idealized GCM, although a comprehensive GCM over several CO 2 doublings has a distinctly different feedback evolution structure. The diffusive perspective requires a non-constant diffusivity to account for the idealized GCM-simulated changes, with important roles for the eddy velocity, dry static stability, and horizontal energy gradients. Beyond diagnostic analysis, GCM-independent a priori theories for components of the temperature feedback are presented that account for changes without knowledge of a perturbed climate state, suggesting that the energetic perspective is the more parsimonious one. 
    more » « less
  3. null (Ed.)
    Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases. 
    more » « less
  4. Abstract Much of our conceptual understanding of midlatitude atmospheric motion comes from two-layer quasigeostrophic (QG) models. Traditionally, these QG models do not include moisture, which accounts for an estimated 30%–60% of the available energy of the atmosphere. The atmospheric moisture content is expected to increase under global warming, and therefore, a theory for how moisture modifies atmospheric dynamics is crucial. We use a two-layer moist QG model with convective adjustment as a basis for analyzing how latent heat release and large-scale moisture gradients impact the scalings of a midlatitude system at the synoptic scale. In this model, the degree of saturation can be tuned independently of other moist parameters by enforcing a high rate of evaporation from the surface. This allows for study of the effects of latent heat release at saturation, without the intrinsic nonlinearity of precipitation. At saturation, this system is equivalent to the dry QG model under a rescaling of both length and time. This predicts that the most unstable mode shifts to smaller scales, the growth rates increase, and the inverse cascade extends to larger scales. We verify these results numerically and use them to verify a framework for the complete energetics of a moist system. We examine the spectral features of the energy transfer terms. This analysis shows that precipitation generates energy at small scales, while dry dynamics drive a significant broadening to larger scales. Cascades of energy are still observed in all terms, albeit without a clearly defined inertial range. Significance Statement The effect of moist processes, especially the impact of latent heating associated with condensation, on the size and strength of midlatitude storms is not well understood. Such insight is particularly needed in the context of global warming, as we expect moisture to play a more important role in a warmer world. In this study, we provide intuition into how including condensation can result in midlatitude storms that grow faster and have features on both larger and smaller scales than their dry counterparts. We provide a framework for quantifying these changes and verify it for the special case where it is raining everywhere. These findings can be extended to the more realistic situation where it is only raining locally. 
    more » « less
  5. Abstract The equator-to-pole temperature gradient has traditionally been understood as the primary driver of the midlatitude storm tracks, which derive their kinetic energy in the process of transporting sensible heat down the gradient. Latent heat, however, accounts for an estimated 30%–60% of the meridional energy transport, a portion which is likely to increase in a warmer world. The contribution of latent heat to the energetics is complicated in that it is inefficient: Only a fraction of the transported latent heat is converted into kinetic energy. Currently, there is no complete theory to explain the relationship between meridional energy transport and kinetic energy generation by midlatitudes eddies. We use a two-layer moist quasigeostrophic model to develop a theory of how the energetic output of the midlatitude atmosphere depends on the relative humidity structure. By varying the surface evaporation rate, we show that the system only reaches the maximum possible energetic output in the saturated limit, producing substantially less kinetic energy at lower evaporation rates. We quantify this reduction in kinetic energy production in terms of a moist conversion efficiency. Using a moist energetic framework, we identify that precipitation dissipation and the diffusion of moisture in subsaturated regions account for the reduction in energetic output. We then show that the moist conversion efficiency can be diagnosed from the distribution of humidity. Significance StatementThe impact of humidity on the strength of midlatitude storms is not well understood. Humidity will increase as the planet warms, but it is unclear whether storms will become stronger or weaker as a result. We use an idealized computer model to learn how humidity will impact the strength of storms. We focus on the effect of evaporation at the planet’s surface, with simulations ranging from a completely dry atmosphere to one with rain everywhere. In between these two limits, it is raining in only part of the atmosphere, and storms are much weaker than in the case with rain everywhere. We discuss how to connect these results to more complex models and real-world data. 
    more » « less