skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 10, 2025

Title: Easy Regional Contrastive Learning of Expressive Fashion Representations
When learning vision-language models (VLM) for the fashion domain, most existing works design new architectures from vanilla BERT with additional objectives, or perform dense multi-task learning with fashion-specific tasks. Though progress has been made, their architecture or objectives are often intricate and the extendibility is limited.By contrast, with simple architecture (comprising only two unimodal encoders) and just the contrastive objective, popular pre-trained VL models (e.g., CLIP) achieve superior performance in general domains, which are further easily extended to downstream tasks.However, inheriting such benefits of CLIP in the fashion domain is non-trivial in the presence of the notable domain gap. Empirically, we find that directly finetuning on fashion data leads CLIP to frequently ignore minor yet important details such as logos and composition, which are critical in fashion tasks such as retrieval and captioning.In this work, to maintain CLIP's simple architecture and objective while explicitly attending to fashion details, we propose E2 : Easy Regional Contrastive Learning of Expressive Fashion Representations. E2 introduces only a few selection tokens and fusion blocks (just 1.9\% additional parameters in total) with only contrastive losses. Despite lightweight, in our primary focus, cross-modal retrieval, E2 notably outperforms existing fashion VLMs with various fashion-specific objectives.Moreover, thanks to CLIP's widespread use in downstream tasks in general domains (e.g., zero-shot composed image retrieval and image captioning), our model can easily extend these models from general domain to the fashion domain with notable improvement.To conduct a comprehensive evaluation, we further collect data from Amazon Reviews to build a new dataset for cross-modal retrieval in the fashion domain.  more » « less
Award ID(s):
2316306 2330215
PAR ID:
10615773
Author(s) / Creator(s):
; ;
Publisher / Repository:
Advances in Neural Information Processing Systems
Date Published:
Volume:
37
Page Range / eLocation ID:
20480--20509
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    We propose CLIP-Lite, an information efficient method for visual representation learning by feature alignment with textual annotations. Compared to the previously proposed CLIP model, CLIP-Lite requires only one negative image-text sample pair for every positive image-text sample during the optimization of its contrastive learning objective. We accomplish this by taking advantage of an information efficient lower-bound to maximize the mutual information between the two input modalities. This allows CLIP-Lite to be trained with significantly reduced amounts of data and batch sizes while obtaining better performance than CLIP at the same scale. We evaluate CLIP-Lite by pretraining on the COCO-Captions dataset and testing transfer learning to other datasets. CLIP-Lite obtains a +14.0 mAP absolute gain in performance on Pascal VOC classification, and a +22.1 top-1 accuracy gain on ImageNet, while being comparable or superior to other, more complex, text-supervised models. CLIP-Lite is also superior to CLIP on image and text retrieval, zero-shot classification, and visual grounding. Finally, we show that CLIP-Lite can leverage language semantics to encourage bias-free visual representations that can be used in downstream tasks. Implementation: https://github.com/4m4n5/CLIP-Lite 
    more » « less
  2. We investigate knowledge retrieval with multi-modal queries, i.e. queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. We curate a new dataset called ReMuQ for benchmarking progress on this task. ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries. We introduce a retriever model “ReViz” that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators. We introduce a new pretraining task that is effective for learning knowledge retrieval with multimodal queries and also improves performance on downstream tasks. We demonstrate superior performance in retrieval on two datasets (ReMuQ and OK-VQA) under zero-shot settings as well as further improvements when finetuned on these datasets. 
    more » « less
  3. Multimodal learning has recently gained significant popularity, demonstrating impressive performance across various zero-shot classification tasks and a range of perceptive and generative applications. Models such as Contrastive Language–Image Pretraining (CLIP) are designed to bridge different modalities, such as images and text, by learning a shared representation space through contrastive learning. Despite their success, the working mechanisms of multimodal learning remain poorly understood. Notably, these models often exhibit a \emph{modality gap}, where different modalities occupy distinct regions within the shared representation space. In this work, we conduct an in-depth analysis of the emergence of modality gap by characterizing the gradient flow learning dynamics. Specifically, we identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training. Furthermore, our theoretical insights are validated through experiments on practical CLIP models. These findings provide principled guidance for mitigating the modality gap, including strategies such as appropriate temperature scheduling and modality swapping. Additionally, we demonstrate that closing the modality gap leads to improved performance on tasks such as image-text retrieval. 
    more » « less
  4. Training a referring expression comprehension (ReC) model for a new visual domain requires collecting referring expressions, and potentially corresponding bounding boxes, for images in the domain. While large-scale pre-trained models are useful for image classification across domains, it remains unclear if they can be applied in a zero-shot manner to more complex tasks like ReC. We present ReCLIP, a simple but strong zero-shot baseline that repurposes CLIP, a state-of-the-art large-scale model, for ReC. Motivated by the close connection between ReC and CLIP’s contrastive pre-training objective, the first component of ReCLIP is a region-scoring method that isolates object proposals via cropping and blurring, and passes them to CLIP. However, through controlled experiments on a synthetic dataset, we find that CLIP is largely incapable of performing spatial reasoning off-the-shelf. We reduce the gap between zero-shot baselines from prior work and supervised models by as much as 29% on RefCOCOg, and on RefGTA (video game imagery), ReCLIP’s relative improvement over supervised ReC models trained on real images is 8%. 
    more » « less
  5. Abstract—We consider the ability of CLIP features to support text-driven image retrieval. Traditional image-based queries sometimes misalign with user intentions due to their focus on irrelevant image components. To overcome this, we explore the potential of text-based image retrieval, specifically using Contrastive Language-Image Pretraining (CLIP) models. CLIP models, trained on large datasets of image-caption pairs, offer a promising approach by allowing natural language descriptions for more targeted queries. We explore the effectiveness of textdriven image retrieval based on CLIP features by evaluating the image similarity for progressively more detailed queries. We find that there is a sweet-spot of detail in the text that gives best results and find that words describing the “tone” of a scene (such as messy, dingy) are quite important in maximizing text-image similarity. 
    more » « less