skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 2, 2026

Title: Transparency and Scission in Augmented Reality
Optical see-through Augmented Reality (OST-AR) is a developing technology with exciting applications including medicine, industry, education, and entertainment. OST-AR creates a mix of virtual and real using an optical combiner that blends images and graphics with the real-world environment. Such an overlay of visual information is simultaneously futuristic and familiar: like the sci-fi navigation and communication interfaces in movies, but also much like banal reflections in glass windows. OSTAR’s transparent displays cause background bleed-through, which distorts color and contrast, yet virtual content is usually easily understandable. Perceptual scission, or the cognitive separation of layers, is an important mechanism, influenced by transparency, depth, parallax, and more, that helps us see what is real and what is virtual. In examples from Pepper’s Ghost, veiling luminance, mixed material modes, window shopping, and today’s OST-AR systems, transparency and scission provide surprising – and ordinary – results. Ongoing psychophysical research is addressing perceived characteristics of color, material, and images in OST-AR, testing and harnessing the perceptual effects of transparency and scission. Results help both understand the visual mechanisms and improve tomorrow’s AR systems.  more » « less
Award ID(s):
1942755
PAR ID:
10615891
Author(s) / Creator(s):
Publisher / Repository:
Society for Imaging Science and Technology
Date Published:
Journal Name:
Electronic Imaging
Volume:
37
Issue:
11
ISSN:
2470-1173
Page Range / eLocation ID:
193-1 to 193-3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rogowitz, Bernice E; Pappas, Thrasyvoulos N (Ed.)
    Augmented reality (AR) combines elements of the real world with additional virtual content, creating a blended viewing environment. Optical see-through AR (OST-AR) accomplishes this by using a transparent beam splitter to overlay virtual elements over a user’s view of the real world. However, the inherent see-through nature of OST-AR carries challenges for color appearance, especially around the appearance of darker and less chromatic objects. When displaying human faces—a promising application of AR technology—these challenges disproportionately affect darker skin tones, making them appear more transparent than lighter skin tones. Still, some transparency in the rendered object may not be entirely negative; people’s evaluations of transparency when interacting with other humans in AR-mediated modalities are not yet fully understood. In this work, two psychophysical experiments were conducted to assess how people evaluate OST-AR transparency across several characteristics including different skin tones, object types, lighting conditions, and display types. The results provide a scale of perceived transparency allowing comparisons to transparency for conventional emissive displays. The results also demonstrate how AR transparency impacts perceptions of object preference and fit within the environment. These results reveal several areas with need for further attention, particularly regarding darker skin tones, lighter ambient lighting, and displaying human faces more generally. This work may be useful in guiding the development of OST-AR technology, and emphasizes the importance of AR design goals, perception of human faces, and optimizing visual appearance in extended reality systems. 
    more » « less
  2. Cho, Isaac; Hoermann, Simon; Krösl, Katharina; Zielasko, Daniel; Cidota, Marina (Ed.)
    An important research question in optical see-through (OST) augmented reality (AR) is, how accurately and precisely can a virtual object’s real world location be perceived? Previously, a method was developed to measure the perceived three-dimensional location of virtual objects in OST AR. In this research, a replication study is reported, which examined whether the perceived location of virtual objects are biased in the direction of the dominant eye. The successful replication analysis suggests that perceptual accuracy is not biased in the direction of the dominant eye. Compared to the previous study’s findings, overall perceptual accuracy increased, and precision was similar. 
    more » « less
  3. Funt, Brian; Kingsburgh, Robin (Ed.)
    Optical see-through AR presents virtual objects to a user through a transparent display that blends them with the real-world environment. This is simultaneously novel and familiar: beam splitters have been used for ghostly visual effects, and yet the mechanism is exactly the same as the reflections in an everyday window. The history of theatrical visual effects leads through a series of vision science experiments and now to research on the perception of transparent AR systems. Still, there is a tension in the perception of AR stimuli: users of AR seem to be able to separate, or scission, the layers of virtual and real, depending on their understanding of the scene and its visual characteristics. 
    more » « less
  4. Augmented reality (AR) devices seek to create compelling visual experiences that merge virtual imagery with the natural world. These devices often rely on wearable near-eye display systems that can optically overlay digital images to the left and right eyes of the user separately. Ideally, the two eyes should be shown images with minimal radiometric differences (e.g., the same overall luminance, contrast, and color in both eyes), but achieving this binocular equality can be challenging in wearable systems with stringent demands on weight and size. Basic vision research has shown that a spectrum of potentially detrimental perceptual effects can be elicited by imagery with radiometric differences between the eyes, but it is not clear whether and how these findings apply to the experience of modern AR devices. In this work, we first develop a testing paradigm for assessing multiple aspects of visual appearance at once, and characterize five key perceptual factors when participants viewed stimuli with interocular contrast differences. In a second experiment, we simulate optical see-through AR imagery using conventional desktop LCD monitors and use the same paradigm to evaluate the multi-faceted perceptual implications when the AR display luminance differs between the two eyes. We also include simulations of monocular AR systems (i.e., systems in which only one eye sees the displayed image). Our results suggest that interocular contrast differences can drive several potentially detrimental perceptual effects in binocular AR systems, such as binocular luster, rivalry, and spurious depth differences. In addition, monocular AR displays tend to have more artifacts than binocular displays with a large contrast difference in the two eyes. A better understanding of the range and likelihood of these perceptual phenomena can help inform design choices that support high-quality user experiences in AR. 
    more » « less
  5. A visual experiment using a beam-splitter-based optical see-through augmented reality (OST-AR) setup tested the effect of the size and alignment of AR overlays with a brightness-matching task using physical cubes. Results indicate that more luminance is required when AR overlays are oversized with respect to the cubes, showing that observers discount the AR overlay to a greater extent when it is more obviously a transparent layer. This is not explained by conventional color appearance modeling but supports an AR-specific model based on foreground-background discounting. The findings and model will help determine parameters for creating convincing AR manipulation of real-world objects. 
    more » « less