skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct electrosynthesis and separation of ammonia and chlorine from waste streams via a stacked membrane-free electrolyzer
Abstract Electrosynthesis, a viable path to decarbonize the chemical industry, has been harnessed to generate valuable chemicals under ambient conditions. Here, we present a membrane-free flow electrolyzer for paired electrocatalytic upcycling of nitrate (NO3) and chloride (Cl) to ammonia (NH3) and chlorine (Cl2) gases by utilizing waste streams as substitutes for traditional electrolytes. The electrolyzer concurrently couples electrosynthesis and gaseous-product separation, which minimizes the undesired redox reaction between NH3and Cl2and thus prevents products loss. Using a three-stacked-modules electrolyzer system, we efficiently processed a reverse osmosis retentate waste stream. This yielded high concentrations of (NH4)2SO4(83.8 mM) and NaClO (243.4 mM) at an electrical cost of 7.1 kWh per kilogram of solid products, while residual NH3/NH4+(0.3 mM), NO2(0.2 mM), and Cl2/HClO/ClO(0.1 mM) pollutants in the waste stream could meet the wastewater discharge regulations for nitrogen- and chlorine-species. This study underscores the value of pairing appropriate half-reactions, utilizing waste streams to replace traditional electrolytes, and merging product synthesis with separation to refine electrosynthesis platforms.  more » « less
Award ID(s):
2215387
PAR ID:
10615902
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A glut of dinitrogen‐derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large‐scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3holds promise in mitigating these environmental impacts and reducing reliance on the energy‐intensive Haber–Bosch process. Herein, we report a high‐performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH−KOH−H2O, for low‐cost NH3electrosynthesis. At 3,000 mA/cm2, the device with a Fe−Cu−Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno‐economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe−Cu−Ni vs. $48.53 for Ni foam per kmol‐NH3). The NaOH−KOH−H2O electrolyte together with the Fe−Cu−Ni ternary catalyst can enable the high‐throughput nitrate‐to‐ammonia applications for affordable and scalable real‐world wastewater treatments. 
    more » « less
  2. Abstract A glut of dinitrogen‐derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large‐scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3holds promise in mitigating these environmental impacts and reducing reliance on the energy‐intensive Haber–Bosch process. Herein, we report a high‐performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH−KOH−H2O, for low‐cost NH3electrosynthesis. At 3,000 mA/cm2, the device with a Fe−Cu−Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno‐economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe−Cu−Ni vs. $48.53 for Ni foam per kmol‐NH3). The NaOH−KOH−H2O electrolyte together with the Fe−Cu−Ni ternary catalyst can enable the high‐throughput nitrate‐to‐ammonia applications for affordable and scalable real‐world wastewater treatments. 
    more » « less
  3. In a circular nutrient economy, nitrogen and phosphorous are removed from waste streams and captured as valuable fertilizer products, to more sustainably reuse the resources in closed-loops and simultaneously protect receiving aquatic environments from harmful N and P emissions. For nutrient reclamation to be competitive with the existing practices of N fixation and P mining, the methods of recovery must achieve at least comparable energy consumption. This study employed the Gibbs free energy of separation to quantify the minimum energy required to recover various N and P fertilizer products from waste streams of fresh and hydrolyzed urine, greywater, domestic wastewater, and secondary treated wastewater effluent. The comparative advantages in theoretical energy intensities for N and P recovery from nutrient-dense waste streams, such as fresh and hydrolyzed urine, were assessed against the other more dilute sources. For example, compared to reclaiming the nutrients from treated wastewater effluent at centralized wastewater treatment plants, the minimum energy required to recover 1.0 M NH 3(aq) from source-separated hydrolyzed urine can be ≈40–68% lower, whereas recovering KH 2 PO 4(s) from diverted fresh urine can, in principle, be ≈13–34% less energy intensive. The study also evaluated the efficiencies required by separation techniques for the energy demand of N and P recovery to be lower than the current production approaches of the Haber–Bosch process and phosphate rock mining. For instance, the most energetically favorable ammoniacal nitrogen and orthophosphate reclamation schemes, which target hydrolyzed and fresh urine, respectively, require energy efficiencies >7% and >39%. This study highlights that strategic selection of waste stream and fertilizer product can enable the most expedient recovery of nutrients and realize a circular economy model for N and P management. 
    more » « less
  4. Abstract Chlorinated very short‐lived substances (Cl‐VSLS) are ubiquitous in the troposphere and can contribute to the stratospheric chlorine budget. In this study, we present measurements of atmospheric dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), chloroform (CHCl3), and 1,2‐dichloroethane (1,2‐DCA) obtained during the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) global‐scale aircraft mission (2016–2018), and use the Community Earth System Model (CESM) updated with recent chlorine chemistry to further investigate their global tropospheric distribution. The measured global average Cl‐VSLS mixing ratios, from 0.2 to 13 km altitude, were 46.6 ppt (CH2Cl2), 9.6 ppt (CHCl3), 7.8 ppt (1,2‐DCA), and 0.84 ppt (C2Cl4) measured by the NSF NCAR Trace Organic Analyzer (TOGA) during ATom. Both measurements and model show distinct hemispheric gradients with the mean measured Northern to Southern Hemisphere (NH/SH) ratio of 2 or greater for all four Cl‐VSLS. In addition, the TOGA profiles over the NH mid‐latitudes showed general enhancements in the Pacific basin compared to the Atlantic basin, with up to ∼18 ppt difference for CH2Cl2in the mid troposphere. We tagged regional source emissions of CH2Cl2and C2Cl4in the model and found that Asian emissions dominate the global distributions of these species both at the surface (950 hPa) and at high altitudes (150 hPa). Overall, our results confirm relatively high mixing ratios of Cl‐VSLS in the UTLS region and show that the CESM model does a reasonable job of simulating their global abundance but we also note the uncertainties with Cl‐VSLS emissions and active chlorine sources in the model. These findings will be used to validate future emission inventories and to investigate the fast convective transport of Cl‐VSLS to the UTLS region and their impact on stratospheric ozone. 
    more » « less
  5. Abstract Herein, aqueous nitrate (NO3) reduction is used to explore composition‐selectivity relationships of randomly alloyed ruthenium‐palladium nanoparticle catalysts to provide insights into the factors affecting selectivity during this and other industrially relevant catalytic reactions. NO3reduction proceeds through nitrite (NO2) and then nitric oxide (NO), before diverging to form either dinitrogen (N2) or ammonium (NH4+) as final products, with N2preferred in potable water treatment but NH4+preferred for nitrogen recovery. It is shown that the NO3and NO starting feedstocks favor NH4+formation using Ru‐rich catalysts, while Pd‐rich catalysts favor N2formation. Conversely, a NO2starting feedstock favors NH4+at ≈50 atomic‐% Ru and selectivity decreases with higher Ru content. Mechanistic differences have been probed using density functional theory (DFT). Results show that, for NO3and NO feedstocks, the thermodynamics of the competing pathways for N–H and N–N formation lead to preferential NH4+ or N2production, respectively, while Ru‐rich surfaces are susceptible to poisoning by NO2feedstock, which displaces H atoms. This leads to a decrease in overall reduction activity and an increase in selectivity toward N2production. Together, these results demonstrate the importance of tailoring both the reaction pathway thermodynamics and initial reactant binding energies to control overall reaction selectivity. 
    more » « less