“Single-atom” catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO 2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment, thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters. 
                        more » 
                        « less   
                    This content will become publicly available on April 17, 2026
                            
                            Enhanced Solar CO2 Reduction Using Single Cobalt Sites on Carbon Nitride Modified with a Dianhydride
                        
                    
    
            Photoactive single-atom catalysts (SACs) are among the most exciting catalytic materials for solar fuel production. Different SACs, including our own Co SACs, have been prepared on graphitic carbon nitride (C3N4) for use in photocatalysis. Building on our prior success, we report here doped C3N4 using various supplemental carbon dopants as the support for Co SACs. The Co SAC on a dianhydride doped C3N4 showed the highest activity in photocatalytic CO2 reduction. Catalyst characterization was carried out to explore the origin of the enhanced activity of this particular Co SAC. The dianhydride doped C3N4 possesses unique microstructural features, including large inter-layer space and fibrous morphology, that could contribute to the enhanced photocatalytic activity. Our results further indicate that the dianhydride is the most effective dopant to incorporate aromatic moieties in C3N4, which resulted in improved charge separation and enhanced activity in photocatalysis. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10616017
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 129
- Issue:
- 15
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 7327 to 7334
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Single‐atom catalysts have demonstrated interesting activity in a variety of applications. In this study, we prepared single Co2+sites on graphitic carbon nitride (C3N4), which was doped with carbon for enhanced activity in visible‐light CO2reduction. The synthesized materials were characterized with a variety of techniques, including microscopy, X‐ray powder diffraction, UV‐vis spectroscopy, infrared spectroscopy, photoluminescence spectroscopy, and X‐ray absorption spectroscopy. Doping C3N4with carbon was found to have profound effect on the photocatalytic activity of the single Co2+sites. At relatively low levels, carbon doping enhanced the photoresponse of C3N4in the visible region and improved charge separation upon photoactivation, thereby enhancing the photocatalytic activity. High levels of carbon doping were found to be detrimental to the photocatalytic activity of the single Co2+sites by altering the structure of C3N4and generating defect sites responsible for charge recombination.more » « less
- 
            Abstract Fe–N–C single‐atom catalysts (SACs) exhibit excellent peroxidase (POD)‐like catalytic activity, owing to their well‐defined isolated iron active sites on the carbon substrate, which effectively mimic the structure of natural peroxidase's active center. To further meet the requirements of diverse biosensing applications, SAC POD‐like activity still needs to be continuously enhanced. Herein, a phosphorus (P) heteroatom is introduced to boost the POD‐like activity of Fe–N–C SACs. A 1D carbon nanowire (FeNCP/NW) catalyst with enriched Fe–N4active sites is designed and synthesized, and P atoms are doped in the carbon matrix to affect the Fe center through long‐range interaction. The experimental results show that the P‐doping process can boost the POD‐like activity more than the non‐P‐doped one, with excellent selectivity and stability. The mechanism analysis results show that the introduction of P into SAC can greatly enhance POD‐like activity initially, but its effect becomes insignificant with increasing amount of P. As a proof of concept, FeNCP/NW is employed in an enzyme cascade platform for highly sensitive colorimetric detection of the neurotransmitter acetylcholine.more » « less
- 
            Abstract Use of single‐atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high‐loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono‐ and bi‐metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X‐ray absorption spectroscopy and, finally, the catalytic performance of a UPD‐synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes.more » « less
- 
            In recent years, ZnIn2S4 (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (EF), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, Co_In, Yb_i, Tc_Zn, Au_S, La_i, Eu_i, Au_i, Ta_In, Hf_In, Zr_In, and Ni_Zn lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
