skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: 2-Aminopyridine nucleobases enable DNA invasion by peptide nucleic acid clamps under physiological conditions
Peptide nucleic acid (PNA) clamps modified with 2-aminopyridine (M) nucleobase invaded double-stranded DNA under physiological salt conditions. In contrast, PNAs carrying common nucleobases could not fully invade DNA under these conditions. M-modified PNAs may overcome the problematic requirement for low salt concentration, a long-standing DNA invasion problem.  more » « less
Award ID(s):
2427911 2107900
PAR ID:
10616061
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Communications
Volume:
61
Issue:
20
ISSN:
1359-7345
Page Range / eLocation ID:
4070 to 4073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Triplex-forming peptide nucleic acids (PNAs) require chemical modifications for efficient sequence-specific recognition of DNA and RNA at physiological pH. Our research groups have developed 2-aminopyridine (M) as an effective mimic of protonated cytosine in C+•G-C triplets. M-modified PNAs have a high binding affinity and sequence specificity as well as promising biological properties for improving PNA applications. This communication reports the optimization of synthetic procedures that give PNA M monomer in seven steps, with minimal need for column chromatography and in good yields and high purity. The optimized route uses inexpensive reagents and easily performed reactions, which will be useful for the broad community of nucleic acid chemists. Thought has also been given to the potential for future development of industrial syntheses of M monomers. 
    more » « less
  2. null (Ed.)
    Abstract Damaged or mismatched DNA bases result in the formation of physical defects in double-stranded DNA. In vivo, defects in DNA must be rapidly and efficiently repaired to maintain cellular function and integrity. Defects can also alter the mechanical response of DNA to bending and twisting constraints, both of which are important in defining the mechanics of DNA supercoiling. Here, we use coarse-grained molecular dynamics (MD) simulation and supporting statistical-mechanical theory to study the effect of mismatched base pairs on DNA supercoiling. Our simulations show that plectoneme pinning at the mismatch site is deterministic under conditions of relatively high force (>2 pN) and high salt concentration (>0.5 M NaCl). Under physiologically relevant conditions of lower force (0.3 pN) and lower salt concentration (0.2 M NaCl), we find that plectoneme pinning becomes probabilistic and the pinning probability increases with the mismatch size. These findings are in line with experimental observations. The simulation framework, validated with experimental results and supported by the theoretical predictions, provides a way to study the effect of defects on DNA supercoiling and the dynamics of supercoiling in molecular detail. 
    more » « less
  3. Abstract Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported thatγ‐modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self‐assembling nanofibers in select polar aprotic organic solvent mixtures. Here we demonstrate that distinctγPNA strands, each with a high density ofγ‐modifications can form complex nanostructures at constant temperatures within 30 minutes. Additionally, we demonstrate DNA‐assisted isothermal growth ofγPNA nanofibers, thereby overcoming a key hurdle for future scale‐up of applications related to nanofiber growth and micropatterning. 
    more » « less
  4. null (Ed.)
    Although our understanding of the microbial diversity found within a given system expands as amplicon sequencing improves, technical aspects still drastically affect which members can be detected. Compared with prokaryotic members, the eukaryotic microorganisms associated with a host are understudied due to their underrepresentation in ribosomal databases, lower abundance compared with bacterial sequences, and higher ribosomal gene identity to their eukaryotic host. Peptide nucleic acid (PNA) blockers are often designed to reduce amplification of host DNA. Here we present a tool for PNA design called the Microbiome Amplification Preference Tool (MAPT). We examine the effectiveness of a PNA designed to block genomic Medicago sativa DNA (gPNA) compared with unrelated surrounding plants from the same location. We applied mitochondrial PNA and plastid PNA to block the majority of DNA from plant mitochondria and plastid 16S ribosomal RNA genes, as well as the novel gPNA. Until now, amplifying both eukaryotic and prokaryotic reads using 515F-Y and 926R has not been applied to a host. We investigate the efficacy of this gPNA using three approaches: (i) in silico prediction of blocking potential in MAPT, (ii) amplicon sequencing with and without the addition of PNAs, and (iii) comparison with cultured fungal representatives. When gPNA is added during amplicon library preparation, the diversity of unique eukaryotic amplicon sequence variants present in M. sativa increases. We provide a layered examination of the costs and benefits of using PNAs during sequencing. The application of MAPT enables scientists to design PNAs specifically to enable capturing greater diversity in their system. 
    more » « less
  5. SUMMARY Cytokinin has strong connections to development and a growing role in the abiotic stress response. Here we show that CYTOKININ RESPONSE FACTOR 2 (CRF2) is additionally involved in the salt (NaCl) stress response. CRF2 promoter‐GUS expression indicates CRF2 involvement in the response to salt stress as well as the previously known cytokinin response. Interestingly, CRF2 mutant seedlings are quite similar to the wild type (WT) under non‐stressed conditions yet have many distinct changes in response to salt stress. Cytokinin levels measured by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that increased in the WT after salt stress are decreased incrf2, potentially from CRF2 regulation of cytokinin biosynthesis genes. Ion content measured by inductively coupled plasma optical emission spectrometry (ICP‐OES) was increased in the WT for Na, K, Mn, Ca and Mg after salt stress, whereas the corresponding Ca and Mg increases are lacking incrf2. Many genes examined by RNA‐seq analysis were altered transcriptionally by salt stress in both the WT andcrf2, yet interestingly approximately one‐third of salt‐modifiedcrf2transcripts (2655) showed unique regulation. Different transcript profiles for salt stress incrf2compared with the WT background was further supported through an examination of co‐expressed genes by weighted gene correlation network analysis (WGCMA) and principal component analysis (PCA). Additionally, Gene Ontology (GO) enrichment terms found from salt‐treated transcripts revealed most photosynthesis‐related terms as only being affected incrf2, leading to an examination of chlorophyll levels and the efficiency of photosystem II (via the ratio of variable fluorescence to maximum fluorescence,Fv/Fm) as well as physiology after salt treatment. Salt stress‐treatedcrf2plants had both reduced chlorophyll levels and lowerFv/Fmvalues compared with the WT, suggesting that CRF2 plays a role in the modulation of salt stress responses linked to photosynthesis. 
    more » « less