skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 20, 2025

Title: Emergent disorder and sub-ballistic dynamics in quantum simulations of the Ising model using Rydberg atom arrays
Rydberg atom arrays with Van der Waals interactions provide a controllable path to simulate the locally connected transverse-field Ising model (TFIM), a prototypical model in statistical mechanics. Remotely operating the publicly accessible Aquila Rydberg atom array, we experimentally investigate the physics of TFIM far from equilibrium and uncover significant deviations from the theoretical predictions. Rather than the expected ballistic spread of correlations, the Rydberg simulator exhibits a sub-ballistic spread, along with a logarithmic scaling of entanglement entropy in time - all while the system mostly retains its initial magnetization. By modeling the atom motion in tweezer traps, we trace these effects to an emergent natural disorder in Rydberg atom arrays, which we characterize with a minimal random spin model. We further experimentally explore the different dynamical regimes hosted in the system by varying the lattice spacing and the Rabi frequency. Our findings highlight the crucial role of atom motion in the many-body dynamics of Rydberg atom arrays at the TFIM limit, and propose simple benchmark measurements to test for its presence in future experiments.  more » « less
Award ID(s):
2118310
PAR ID:
10616089
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
arxiv
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the Maximum Independent Set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find the problem hardness is controlled by the solution degeneracy and number of local minima, and experimentally benchmark the quantum algorithm’s performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins. 
    more » « less
  2. Quantum spin liquids are exotic phases of matter whose low-energy physics is described as the deconfined phase of an emergent gauge theory. With recent theory proposals and an experiment showing preliminary signs of Z 2 topological order [G. Semeghini , ], Rydberg atom arrays have emerged as a promising platform to realize a quantum spin liquid. In this work, we propose a way to realize a U(1) quantum spin liquid in three spatial dimensions, described by the deconfined phase of U(1) gauge theory in a pyrochlore lattice Rydberg atom array. We study the ground state phase diagram of the proposed Rydberg system as a function of experimentally relevant parameters. Within our calculation, we find that by tuning the Rabi frequency, one can access both the confinement-deconfinement transition driven by a proliferation of “magnetic” monopoles and the Higgs transition driven by a proliferation of “electric” charges of the emergent gauge theory. We suggest experimental probes for distinguishing the deconfined phase from ordered phases. This work serves as a proposal to access a confinement-deconfinement transition in three spatial dimensions on a Rydberg-based quantum simulator. Published by the American Physical Society2025 
    more » « less
  3. We propose and analyze a sample-efficient protocol to estimate the fidelity between an experimentally prepared state and an ideal target state, applicable to a wide class of analog quantum simulators without advanced spatiotemporal control. Our protocol relies on universal fluctuations emerging from generic Hamiltonian dynamics, that we discover in the present work. It does not require fine-tuned control over state preparation, quantum evolution, or readout capability, while achieving near optimal sample complexity: a percent-level precision is obtained with ∼ 103 measurements, independent of system size. Furthermore, the accuracy of our fidelity estimation improves exponentially with increasing system size. We numerically demonstrate our protocol in a variety of quantum simulator platforms including quantum gas microscopes, trapped ions, and Rydberg atom arrays. We discuss applications of our method for tasks such as multi-parameter estimation of quantum states and processes. 
    more » « less
  4. null (Ed.)
    We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries. In addition, we identify a regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays. 
    more » « less
  5. Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology. 
    more » « less