skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Rotation and Anisotropic Ablation of Small Meteoroids and Their Effects on Head Echo Plasma Formation via Computational Techniques
Abstract High‐power large‐aperture radar instruments observe numerous meteor head echoes per minute. Head echoes result from reflections of radio waves from plasma surrounding meteoroids as they enter Earth's atmosphere. Knowledge of the spatial distribution of electrons in this plasma is essential to determining the mass loss rate of the meteor as a function of its measured radar cross‐section. Prior work applies theoretical and computational methods to determine the electron density distribution, but assumes the meteoroid emits neutral particles uniformly across its surface. In this paper, a numerical surface ablation model demonstrates that meteoroid mass loss may occur preferentially in the direction facing the oncoming atmosphere. Specifically, meteoroid mass loss becomes proportional to the frontal surface area facing the freestream atmosphere in the limit of high Biot number, but remains isotropic in the limit of low Biot number. Meteoroid rotation has a small effect on the direction of ejected mass, but the effect is insignificant compared to variation in meteoroid properties that affect the Biot number. This result informs our computational meteor plasma model, in which we compare the effect of meteoroid vaporization on the plasma distribution in the limits of low versus high Biot number. The resulting electron density profiles demonstrate order‐of‐magnitude agreement between each other, with peak difference of 70% immediately upstream of the meteoroid. This implies that the directional distribution of vaporizing neutrals likely does not significantly influence head echo observations, lending credence to existing work that assumes isotropic ablation.  more » « less
Award ID(s):
2301645
PAR ID:
10616238
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
JGR Space Physics
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
130
Issue:
6
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a machine-learning approach to detect and analyze meteor echoes (MADAME), which is a radar data processing workflow featuring advanced machine-learning techniques using both supervised and unsupervised learning. Our results demonstrate that YOLOv4, a convolutional neural network (CNN)-based one-stage object detection model, performs remarkably well in detecting and identifying meteor head and trail echoes within processed radar signals. The detector can identify more than 80 echoes per minute in the testing data obtained from the Jicamarca high power large aperture (HPLA) radar. MADAME is also capable of autonomously processing data in an interferometer mode, as well as determining the target’s radiant source and vector velocity. In the testing data, the Eta Aquarids meteor shower could be clearly identified from the meteor radiant source distribution analyzed automatically by MADAME, thereby demonstrating the proposed algorithm’s functionality. In addition, MADAME found that about 50 percent of the meteors were traveling in inclined and near-inclined circular orbits. Furthermore, meteor head echoes with a trail are more likely to originate from shower meteor sources. Our results highlight the capability of advanced machine-learning techniques in radar signal processing, providing an efficient and powerful tool to facilitate future and new meteor research. 
    more » « less
  2. Abstract High‐power large‐aperture radar instruments are capable of detecting thousands of meteor head echoes within hours of observation, and manually identifying every head echo is prohibitively time‐consuming. Previous work has demonstrated that convolutional neural networks (CNNs) accurately detect head echoes, but training a CNN requires thousands of head echo examples manually identified at the same facility and with similar experiment parameters. Since pre‐labeled data is often unavailable, a method is developed to simulate head echo observations at any given frequency and pulse code. Real instances of radar clutter, noise, or ionospheric phenomena such as the equatorial electrojet are additively combined with synthetic head echo examples. This enables the CNN to differentiate between head echoes and other phenomena. CNNs are trained using tens of thousands of simulated head echoes at each of three radar facilities, where concurrent meteor observations were performed in October 2019. Each CNN is tested on a subset of actual data containing hundreds of head echoes, and demonstrates greater than 97% classification accuracy at each facility. The CNNs are capable of identifying a comprehensive set of head echoes, with over 70% sensitivity at all three facilities, including when the equatorial electrojet is present. The CNN demonstrates greater sensitivity to head echoes with higher signal strength, but still detects more than half of head echoes with maximum signal strength below 20 dB that would likely be missed during manual detection. These results demonstrate the ability of the synthetic data approach to train a machine learning algorithm to detect head echoes. 
    more » « less
  3. ABSTRACT This work presents the result of sporadic meteor radiant density distribution using the Arecibo 430 MHz incoherent scatter radar (ISR) located in Puerto Rico for the first time. Although numerous meteor studies have been carried out using the Arecibo ISR, meteoroid radiant density distribution has remained a mystery as the Arecibo radar cannot measure vector velocity. A numerical orbital simulation algorithm using dynamic programming and stochastic gradient descent is designed to solve the sporadic meteoroid radiant density and the corresponding speed distributions of the meteors observed at Arecibo. The data set for the algorithm comprises over 250 000 meteors from Arecibo observations between 2009 and 2017. Five of the six recognized sporadic meteor sources can be identified from our result. There is no clearly identifiable South Apex source. Instead, there is a broad distribution between +/−30° ecliptic latitude, with the peak density located in the North Apex direction. Our results also indicate that the Arecibo radar is not sensitive to meteors travelling straight into or perpendicular to the antenna beam but is most sensitive to meteors with an arrival angle between 30° and 60°. Our analysis indicates that about 75 per cent of meteoroids observed by the Arecibo radar travel in prograde orbits when the impact probability is considered. Most of the retrograde meteoroids travel in inclined low-eccentricity orbits. 
    more » « less
  4. Abstract Meteoroids of sub‐milligram sizes burn up high in the Earth's atmosphere and cause streaks of plasma trails detectable by meteor radars. The altitude at which these trails, or meteors, form depends on a number of factors including atmospheric density and the astronomical source populations from which these meteoroids originate. A previous study has shown that the altitude of these meteors is affected by long‐term linear trends and the 11‐year solar cycle related to changes in our atmosphere. In this work, we examine how shorter diurnal and seasonal variations in the altitude distribution of meteors are dependent on the geographical location at which the measurements are performed. We use meteoroid altitude data from 18 independent meteor radar stations at a broad range of latitudes and investigate whether there are local time (LT) and seasonal variations in the altitude of the peak meteor height, defined as the majority detection altitude of all meteors within a certain period, which differ from those expected purely from the variation in the visibility of their astronomical source. We find a consistent LT and seasonal response for the Northern Hemisphere locations regardless of latitude. However, the Southern Hemisphere locations exhibit much greater LT and seasonal variation. In particular, we find a complex response in the four stations located within the Southern Andes region, which indicates that the strong dynamical atmospheric activity, such as the gravity waves prevalent here, disrupts, and masks the seasonality and dependence on the astronomical sources. 
    more » « less
  5. On 10 and 11 October 2019, high‐power radar observations were performed simultaneously for 8 hours at Resolute Bay Incoherent Scatter North (RISR‐N), Jicamarca Radio Observatory (JRO), and Millstone Hill Observatory (MHO). The concurrent observations eliminate diurnal, seasonal, and space weather biases in the meteor head echo populations and elucidate relative sensitivities of each facility and configuration. Each facility observed thousands of head echoes, with JRO observing tens of thousands. An inter‐pulse phase matching technique employs Doppler shifts to determine head echo range rates (velocity component along radar beam) with order‐of‐magnitude greater accuracy versus measuring the Doppler shift at individual pulses, and this technique yields accurate range rates and decelerations for a subset of the head echo population at each facility. Because RISR‐N is at high latitude and points away from the ecliptic plane, it does not observe head echoes with range rates faster than 55 km/s, although its head echo population demonstrates a bias toward larger and faster head echoes. At JRO near the equator, a larger spread of range rates is observed. MHO observes a large spread of range rates at mid‐latitude despite its comparable frequency to RISR‐N, but this occurs because its beam was pointed at a 45° elevation angle unlike RISR‐N and JRO which were pointed near‐zenith. A trend of greater decelerations at lower altitudes is observed at RISR‐N and JRO, with decelerations of up to 60 km/s^2, but high‐deceleration events of up to 1,000 km/s^2 previously observed in head echo studies are not observed. 
    more » « less