skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $$f$$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.  more » « less
Award ID(s):
2323112
PAR ID:
10616241
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the 42nd International Conference on Machine Learning
Date Published:
Volume:
267
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruiz, Francisco and (Ed.)
    Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an $$\epsilon$$-JDP algorithm with a regret of $$\widetilde{O}(\sqrt{SAH^2T}+S^2AH^3/\epsilon)$$ which matches the information-theoretic lower bound of non-private learning for all choices of $$\epsilon> S^{1.5}A^{0.5} H^2/\sqrt{T}$$. In the above, $$S$$, $$A$$ denote the number of states and actions, $$H$$ denotes the planning horizon, and $$T$$ is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves privacy for free asymptotically as $$T\rightarrow \infty$$. Our techniques — which could be of independent interest — include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less
  2. Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an ϵ-JDP algorithm with a regret of O˜(sqrt(SAH^2T) +S^2AH^3/ϵ) which matches the information-theoretic lower bound of non-private learning for all choices of ϵ>S^1.5A^0.5H^2/sqrt(T). In the above, S, A denote the number of states and actions, H denotes the planning horizon, and T is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves \emph{privacy for free} asymptotically as T→∞. Our techniques -- which could be of independent interest -- include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less
  3. This paper studies multi-stage systems with end-to-end bandit feedback. In such systems, each job needs to go through multiple stages, each managed by a different agent, before generating an outcome. Each agent can only control its own action and learn the final outcome of the job. It has neither knowledge nor control on actions taken by agents in the next stage. The goal of this paper is to develop distributed online learning algorithms that achieve sublinear regret in adversarial environments. The setting of this paper significantly expands the traditional multi-armed bandit problem, which considers only one agent and one stage. In addition to the exploration-exploitation dilemma in the traditional multi-armed bandit problem, we show that the consideration of multiple stages introduces a third component, education, where an agent needs to choose its actions to facilitate the learning of agents in the next stage. To solve this newly introduced exploration-exploitation-education trilemma, we propose a simple distributed online learning algorithm, ϵ-EXP3. We theoretically prove that the ϵ-EXP3 algorithm is a no-regret policy that achieves sublinear regret. Simulation results show that the ϵ-EXP3 algorithm significantly outperforms existing no-regret online learning algorithms for the traditional multi-armed bandit problem. 
    more » « less
  4. Safe reinforcement learning is extremely challenging--not only must the agent explore an unknown environment, it must do so while ensuring no safety constraint violations. We formulate this safe reinforcement learning (RL) problem using the framework of a finite-horizon Constrained Markov Decision Process (CMDP) with an unknown transition probability function, where we model the safety requirements as constraints on the expected cumulative costs that must be satisfied during all episodes of learning. We propose a model-based safe RL algorithm that we call Doubly Optimistic and Pessimistic Exploration (DOPE), and show that it achieves an objective regret $$\tilde{O}(|\mathcal{S}|\sqrt{|\mathcal{A}| K})$$ without violating the safety constraints during learning, where $$|\mathcal{S}|$$ is the number of states, $$|\mathcal{A}|$$ is the number of actions, and $$K$$ is the number of learning episodes. Our key idea is to combine a reward bonus for exploration (optimism) with a conservative constraint (pessimism), in addition to the standard optimistic model-based exploration. DOPE is not only able to improve the objective regret bound, but also shows a significant empirical performance improvement as compared to earlier optimism-pessimism approaches. 
    more » « less
  5. In this work, we propose to improve long-term user engagement in a recommender system from the perspective of sequential decision optimization, where users' click and return behaviors are directly modeled for online optimization. A bandit-based solution is formulated to balance three competing factors during online learning, including exploitation for immediate click, exploitation for expected future clicks, and exploration of unknowns for model estimation. We rigorously prove that with a high probability our proposed solution achieves a sublinear upper regret bound in maximizing cumulative clicks from a population of users in a given period of time, while a linear regret is inevitable if a user's temporal return behavior is not considered when making the recommendations. Extensive experimentation on both simulations and a large-scale real-world dataset collected from Yahoo frontpage news recommendation log verified the effectiveness and significant improvement of our proposed algorithm compared with several state-of-the-art online learning baselines for recommendation. 
    more » « less