skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 28, 2026

Title: Evaporative cooling signals for wound healing in plants
Abstract Repairing a damaged body part is critical for the survival of any organism. In plants, tissue damage induces rapid responses that activate defense, regeneration and wound healing. While early wound signaling mediated by phytohormones, electrical signals and reactive oxygen species is well-characterized, the mechanisms governing the final stages of wound healing remain poorly understood. Here, we show that wounding in Arabidopsis leaves induces localized cooling, likely due to evaporative water loss, accompanied by the activation of cold-responsive genes. The subsequent disappearance of localized cooling and deactivation of cold-responsive genes serve as a quantitative marker of wound healing. Based on these observations, we developed a workflow by leveraging computer vision and deep learning to monitor the dynamics of wound healing. We found that CBFs transcription factors relay injury-induced cooling signal to wound healing. Thus, our work advances our understanding of tissue repair and provides a tool to quantify wound healing in plants.  more » « less
Award ID(s):
2039313
PAR ID:
10616278
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundBasic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. ResultsIn this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtainedviaa simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. ConclusionConsequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration. 
    more » « less
  2. Although the mechanisms underlying wound healing are largely preserved across wound types, the method of injury can affect the healing process. For example, burn wounds are more likely to undergo hypertrophic scarring than are lacerations, perhaps due to the increased underlying damage that needs to be cleared. This tissue clearance is thought to be mainly managed by immune cells, but it is unclear if fibroblasts contribute to this process. Herein, we utilize a 3D in vitro model of stromal wound healing to investigate the differences between two modes of injury: laceration and laser ablation. We demonstrate that laser ablation creates a ring of damaged tissue around the wound that is cleared by fibroblasts prior to wound closure. This process is dependent on ROCK and dynamin activity, suggesting a phagocytic or endocytic process. Transmission electron microscopy of fibroblasts that have entered the wound area reveals large intracellular vacuoles containing fibrillar extracellular matrix. These results demonstrate a new model to study matrix clearance by fibroblasts in a 3D soft tissue. Because aberrant wound healing is thought to be caused by an imbalance between matrix degradation and production, this model, which captures both aspects, will be a valuable addition to the study of wound healing. 
    more » « less
  3. Abstract Immune response is critical in septic wound healing. The aberrant and imbalanced signaling dynamics primarily cause a dysfunctional innate immune response, exacerbating pathogen invasion of injured tissue and further stalling the healing process. To design biological controllers that regulate the critical divergence of the immune response during septicemia, we need to understand the intricate differences in immune cell dynamics and coordinated molecular signals of healthy and sepsis injury. Here, we deployed an ordinary differential equation (ODE)-based model to capture the hyper and hypo-inflammatory phases of sepsis wound healing. Our results indicate that impaired macrophage polarization leads to a high abundance of monocytes, M1, and M2 macrophage phenotypes, resulting in immune paralysis. Using a model-based analysis framework, we designed a biological controller which successfully regulates macrophage dysregulation observed in septic wounds. Our model describes a systems biology approach to predict and explore critical parameters as potential therapeutic targets capable of transitioning septic wound inflammation toward a healthy, wound-healing state. 
    more » « less
  4. Abstract Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet‐like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post‐trauma bleeding. PLP fibrin‐binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post‐traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post‐trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP‐mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony‐forming unit assays, a murine liver trauma model, and a murine full‐thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag‐PLPs have great promise for treating hemorrhage and improving healing following trauma. 
    more » « less
  5. Abstract Biomaterial wound dressings, such as hydrogels, interact with host cells to regulate tissue repair. This study investigates how crosslinking of gelatin-based hydrogels influences immune and stromal cell behavior and wound healing in female mice. We observe that softer, lightly crosslinked hydrogels promote greater cellular infiltration and result in smaller scars compared to stiffer, heavily crosslinked hydrogels. Using single-cell RNA sequencing, we further show that heavily crosslinked hydrogels increase inflammation and lead to the formation of a distinct macrophage subpopulation exhibiting signs of oxidative activity and cell fusion. Conversely, lightly crosslinked hydrogels are more readily taken up by macrophages and integrated within the tissue. The physical properties differentially affect macrophage and fibroblast interactions, with heavily crosslinked hydrogels promoting pro-fibrotic fibroblast activity that drives macrophage fusion through RANKL signaling. These findings suggest that tuning the physical properties of hydrogels can guide cellular responses and improve healing, offering insights for designing better biomaterials for wound treatment. 
    more » « less