skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 27, 2026

Title: Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation
ABSTRACT Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitute the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased the MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full-length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.IMPORTANCESpatially organizing biosynthetic pathway enzymes is a promising strategy to increase pathway throughput and yield. Bacterial microcompartments (MCPs) are proteinaceous organelles that many bacteria natively use as a spatial organization strategy to encapsulate niche metabolic pathways, providing significant metabolic benefits. Encapsulating heterologous pathways of interest in MCPs could confer these benefits to industrially relevant pathways. Here, we investigate the role of signal sequences, short domains that target proteins for encapsulation in MCPs, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterize two novel signal sequences on structural proteins, constituting the first Pdu signal sequences found on structural proteins rather than enzymes, and perform knockout studies to compare the impacts of enzymatic and structural signal sequences on MCP assembly. Our results demonstrate that enzymatic and structural signal sequences play critical but distinct roles in Pdu MCP assembly and provide design rules for engineering MCPs while minimizing disruption to MCP assembly.  more » « less
Award ID(s):
2021900
PAR ID:
10616397
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Ellermeier, Craig D
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mSphere
Volume:
10
Issue:
5
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm. 
    more » « less
  2. The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts. 
    more » « less
  3. Abstract MotivationWhile traditionally utilized for identifying site-specific metabolic activity within a compound to alter its interaction with a metabolizing enzyme, predicting the site-of-metabolism (SOM) is essential in analyzing the promiscuity of enzymes on substrates. The successful prediction of SOMs and the relevant promiscuous products has a wide range of applications that include creating extended metabolic models (EMMs) that account for enzyme promiscuity and the construction of novel heterologous synthesis pathways. There is therefore a need to develop generalized methods that can predict molecular SOMs for a wide range of metabolizing enzymes. ResultsThis article develops a Graph Neural Network (GNN) model for the classification of an atom (or a bond) being an SOM. Our model, GNN-SOM, is trained on enzymatic interactions, available in the KEGG database, that span all enzyme commission numbers. We demonstrate that GNN-SOM consistently outperforms baseline machine learning models, when trained on all enzymes, on Cytochrome P450 (CYP) enzymes, or on non-CYP enzymes. We showcase the utility of GNN-SOM in prioritizing predicted enzymatic products due to enzyme promiscuity for two biological applications: the construction of EMMs and the construction of synthesis pathways. Availability and implementationA python implementation of the trained SOM predictor model can be found at https://github.com/HassounLab/GNN-SOM. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Carboxysomes, responsible for a substantial fraction of CO 2 fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria , primarily from the phyla Proteobacteria and Cyanobacteria . Carboxysomes facilitate CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO 2 concentration is variable or low, or O 2 is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO 2 concentrating mechanism, in which cells accumulate HCO 3 − in the cytoplasm via active transport, HCO 3 − enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO 3 − to CO 2 , which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and β-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts. 
    more » « less
  5. Abstract Background:Protein presence information is an essential component of biological pathway identification. Presence of certain enzymes in an organism points towards the metabolic pathways that occur within it, whereas the absence of these enzymes indicates either the existence of alternative pathways or a lack of these pathways altogether. The same inference applies to regulatory pathways such as gene regulation and signal transduction. Protein presence information therefore forms the basis for biological pathway studies, and patterns in presence-absence across multiple organisms allow for comparative pathway analyses. Results:Here we present ProTaxoVis, a novel bioinformatic tool that extracts protein presence information from database queries and maps it to a taxonomic tree or heatmap. ProTaxoVis generates a large-scale overview of presence patterns in taxonomic clades of interest. This overview reveals protein distribution patterns, and this can be used to deduce pathway evolution or to probe other biological questions. ProTaxoVis combines and filters sequence query results to extract information on the distribution of proteins and translates this information into two types of visual outputs: taxonomic trees and heatmaps. The trees supplement their topology with scaled pie-chart representations per node of the presence of target proteins and combinations of these proteins, such that patterns in taxonomic groups can easily be identified. The heatmap visualisation shows presence and conservation of these proteins for a user-determined set of species, allowing for a more detailed view over a larger group of proteins as compared to the trees. ProTaxoVis also allows for visual quality checks of hits based on a coverage plot and a length histogram, which can be used to determine e-value and minimum protein length cutoffs. Tabular output of resulting data from the query, combined, and heatmap building step are saved and easily accessible for further analyses. Conclusions:We evaluate our tool with the phosphoribosyltransferases, a transferase enzyme family with notable distribution patterns amongst organisms of varying complexities and across Eukaryota, Bacteria, and Archaea. ProTaxoVis is open-source and available at:https://github.com/MolecularBioinformatics/ProTaxoVis. 
    more » « less