skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 2, 2025

Title: "Better Be Computer or I'm Dumb": A Large-Scale Evaluation of Humans as Audio Deepfake Detectors
Audio deepfakes represent a rising threat to trust in our daily communications. In response to this, the research community has developed a wide array of detection techniques aimed at preventing such attacks from deceiving users. Unfortunately, the creation of these defenses has generally overlooked the most important element of the system - the user themselves. As such, it is not clear whether current mechanisms augment, hinder, or simply contradict human classification of deepfakes. In this paper, we perform the first large-scale user study on deepfake detection. We recruit over 1,200 users and present them with samples from the three most widely-cited deepfake datasets. We then quantitatively compare performance and qualitatively conduct thematic analysis to motivate and understand the reasoning behind user decisions and differences from machine classifications. Our results show that users correctly classify human audio at significantly higher rates than machine learning models, and rely on linguistic features and intuition when performing classification. However, users are also regularly misled by pre-conceptions about the capabilities of generated audio (e.g., that accents and background sounds are indicative of humans). Finally, machine learning models suffer from significantly higher false positive rates, and experience false negatives that humans correctly classify when issues of quality or robotic characteristics are reported. By analyzing user behavior across multiple deepfake datasets, our study demonstrates the need to more tightly compare user and machine learning performance, and to target the latter towards areas where humans are less likely to successfully identify threats.  more » « less
Award ID(s):
1933208 2206950 2205171
PAR ID:
10616851
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400706363
Page Range / eLocation ID:
2696 to 2710
Format(s):
Medium: X
Location:
Salt Lake City UT USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Cochlear implants (CIs) allow deaf and hard-ofhearing individuals to use audio devices, such as phones or voice assistants. However, the advent of increasingly sophisticated synthetic audio (i.e., deepfakes) potentially threatens these users. Yet, this population’s susceptibility to such attacks is unclear. In this paper, we perform the first study of the impact of audio deepfakes on CI populations. We examine the use of CI-simulated audio within deepfake detectors. Based on these results, we conduct a user study with 35 CI users and 87 hearing persons (HPs) to determine differences in how CI users perceive deepfake audio. We show that CI users can, similarly to HPs, identify text-to-speech generated deepfakes. Yet, they perform substantially worse for voice conversion deepfake generation algorithms, achieving only 67% correct audio classification. We also evaluate how detection models trained on a CI-simulated audio compare to CI users and investigate if they can effectively act as proxies for CI users. This work begins an investigation into the intersection between adversarial audio and CI users to identify and mitigate threats against this marginalized group. 
    more » « less
  2. By employing generative deep learning techniques, Deepfakes are created with the intent to create mistrust in society, manipulate public opinion and political decisions, and for other malicious purposes such as blackmail, scamming, and even cyberstalking. As realistic deepfake may involve manipulation of either audio or video or both, thus it is important to explore the possibility of detecting deepfakes through the inadequacy of generative algorithms to synchronize audio and visual modalities. Prevailing performant methods, either detect audio or video cues for deepfakes detection while few ensemble the results after predictions on both modalities without inspecting relationship between audio and video cues. Deepfake detection using joint audiovisual representation learning is not explored much. Therefore, this paper proposes a unified multimodal framework, Multimodaltrace, which extracts learned channels from audio and visual modalities, mixes them independently in IntrAmodality Mixer Layer (IAML), processes them jointly in IntErModality Mixer Layers (IEML) from where it is fed to multilabel classification head. Empirical results show the effectiveness of the proposed framework giving state-of-the-art accuracy of 92.9% on the FakeAVCeleb dataset. The cross-dataset evaluation of the proposed framework on World Leaders and Presidential Deepfake Detection Datasets gives an accuracy of 83.61% and 70% respectively. The study also provides insights into how the model focuses on different parts of audio and visual features through integrated gradient analysis 
    more » « less
  3. The increasing reach of deepfakes raises practical questions about people’s ability to detect false videos online. How vulnerable are people to deepfake videos? What technologies can help improve detection? Previous experiments that measure human deepfake detection historically omit a number of conditions that can exist in typical browsing conditions. Here, we operationalized four such conditions (low prevalence, brief presentation, low video quality, and divided attention), and found in a series of online experiments that all conditions lowered detection relative to baseline, suggesting that the current literature underestimates people’s susceptibility to deepfakes. Next, we examined how AI assistance could be integrated into the human decision process. We found that a model that exposes deepfakes by amplifying artifacts increases detection rates, and also leads to higher rates of incorporating AI feedback and higher final confidence than text-based prompts. Overall, this suggests that visual indicators that cause distortions on fake videos may be effective at mitigating the impact of falsified video. 
    more » « less
  4. Deepfake speech represents a real and growing threat to systems and society. Many detectors have been created to aid in defense against speech deepfakes. While these detectors implement myriad methodologies, many rely on low-level fragments of the speech generation process. We hypothesize that breath, a higher-level part of speech, is a key component of natural speech and thus improper generation in deepfake speech is a performant discriminator. To evaluate this, we create a breath detector and leverage this against a custom dataset of online news article audio to discriminate between real/deepfake speech. Additionally, we make this custom dataset publicly available to facilitate comparison for future work. Applying our simple breath detector as a deepfake speech discriminator on in-the-wild samples allows for accurate classification (perfect 1.0 AUPRC and 0.0 EER on test data) across 33.6 hours of audio. We compare our model with the state-of-the-art SSL-wav2vec and Codecfake models and show that these complex deep learning model completely either fail to classify the same in-the-wild samples (0.72 AUPRC and 0.89 EER), or substantially lack in the computational and temporal performance compared to our methodology (37 seconds to predict a one minute sample with Codecfake vs. 0.3 seconds with our model) 
    more » « less
  5. A deepfake is content or material that is synthetically generated or manipulated using artificial intelligence (AI) methods, to be passed off as real and can include audio, video, image, and text synthesis. The key difference between manual editing and deepfakes is that deepfakes are AI generated or AI manipulated and closely resemble authentic artifacts. In some cases, deepfakes can be fabricated using AI-generated content in its entirety. Deepfakes have started to have a major impact on society with more generation mechanisms emerging everyday. This article makes a contribution in understanding the landscape of deepfakes, and their detection and generation methods. We evaluate various categories of deepfakes especially in audio. The purpose of this survey is to provide readers with a deeper understanding of (1) different deepfake categories; (2) how they could be created and detected; (3) more specifically, how audio deepfakes are created and detected in more detail, which is the main focus of this paper. We found that generative adversarial networks (GANs), convolutional neural networks (CNNs), and deep neural networks (DNNs) are common ways of creating and detecting deepfakes. In our evaluation of over 150 methods, we found that the majority of the focus is on video deepfakes, and, in particular, the generation of video deepfakes. We found that for text deepfakes, there are more generation methods but very few robust methods for detection, including fake news detection, which has become a controversial area of research because of the potential heavy overlaps with human generation of fake content. Our study reveals a clear need to research audio deepfakes and particularly detection of audio deepfakes. This survey has been conducted with a different perspective, compared to existing survey papers that mostly focus on just video and image deepfakes. This survey mainly focuses on audio deepfakes that are overlooked in most of the existing surveys. This article's most important contribution is to critically analyze and provide a unique source of audio deepfake research, mostly ranging from 2016 to 2021. To the best of our knowledge, this is the first survey focusing on audio deepfakes generation and detection in English. 
    more » « less