As the demand for sustainable and efficient water treatment solutions grows, the integration of advanced nanomaterials has become a focal point in enhancing membrane technologies. The purpose of this review is to provide a comprehensive and critical analysis of the current state of research on Ti3C2Tx MXenes, highlighting their unique properties, the challenges they address, and the potential they hold for MXene-enhanced biofiltration-membrane systems. The perspective systematically examines how Ti3C2Tx MXenes, with their exceptional electrical conductivity, hydrophilicity, and tunable surface chemistry, can be integrated into biofiltration-membrane systems to improve key performance metrics such as water flux, contaminant rejection, and fouling resistance. Various processes, including biofiltration, adsorption, and nanofiltration, are discussed, where Ti3C2Tx MXenes have been shown to have a potential application. In addition to synthesizing existing literature, experimental validations are presented that demonstrate how MXene incorporation can alter membrane morphology and structure, leading to improved antibacterial properties and enhanced overall performance. These findings underscore the transformative potential of Ti3C2Tx MXenes in developing next-generation biofiltration-membrane technologies that are not only more efficient but also more sustainable. Through this perspective, the key challenges that remain, such as cost implications and long-term stability, are identified, and future research directions are proposed to address these issues. This in-depth analysis highlights the critical role MXenes can play in advancing water treatment technologies, particularly in the context of water reuse, and encourages further interdisciplinary research in this rapidly evolving field. 
                        more » 
                        « less   
                    This content will become publicly available on December 28, 2025
                            
                            MXenes: Changing the World – A Conference Report and a Look into the Future
                        
                    
    
            With the accelerated global interest in MXenes, the fastest-growing family of 2D materials, Drexel University hosted the 3rd International Conference, MXenes: Changing the World. This vibrant conference is the only one in the US solely devoted to MXenes, and the presentations and discussions brought together a significant number of top researchers with students. However, dedicated conferences and an increasing number of symposia are popping up worldwide as more applications and adaptations of MXenes are discovered and developed. We see the impact of this material and embrace its momentum as we look to the future. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2416797
- PAR ID:
- 10617024
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Graphene and 2D Materials
- ISSN:
- 2731-6505
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Structural color arises from light scattering rather than organic pigments and can be found in Nature, such as in bird feathers and butterfly wings. Synthetic materials can mimic Nature by leveraging materials with contrasting optical characteristics by controlling each materials’ spatial arrangement in a heterostructure. Two-dimensional MXene nanosheets are particularly interesting due to their unique optical properties, but MXenes have not been used directly as a structural colorant because it is challenging to control the spatial placement of MXenes at the nanometer level. Here, we report the emergence of structural color in layer-by-layer (LbL) assemblies of Ti3C2TzMXene nanosheets and polyelectrolyte heterostructures with controlled block thicknesses. The block thickness and spatial placement of MXene are controlled by the assembly’s salt concentration and number of layer pairs. This work demonstrates that optical characteristics of MXene/polyelectrolyte heterostructures depend on MXene content and placement, while deepening the understanding of MXenes within structural color films.more » « less
- 
            Abstract MXenes are 2D materials with relatively high surface areas, high electrical conductivities, functional transition metal surfaces, tunable surface chemistries, and solution processability. Due to these properties, 2D MXenes have attracted widespread attention as electrode materials for energy storage devices, including electrochemical capacitors, with high power and energy densities. However, many studies have shown that the electrochemical performance of MXene electrodes is considerably affected by their structure and morphology. These properties are, for the most part, controlled by the method used for the assembly of 2D MXene flakes and the electrode fabrication methods. A successful electrode assembly and fabrication method should address several challenges, such as the restacking of 2D flakes, to achieve electrode structures and morphologies that deliver high ionic transport properties, electrical conductivity, and mechanical stability. This review aims to provide insight into the current state‐of‐the‐art assembly and fabrication methods used to design and fabricate high performance electrodes based on MXenes. The major challenges to be addressed and possible future directions in the fabrication of MXene electrodes for practical energy storage applications are highlighted.more » « less
- 
            Abstract MXenes are 2D materials with great potential in various applications. However, the degradation of MXenes in humid environments has become a main obstacle in their practical use. Here we combine deep neural networks and an active learning scheme to develop a neural network potential (NNP) for aqueous MXene systems with ab initio precision but low cost. The oxidation behaviors of super large aqueous MXene systems are investigated systematically at nanosecond timescales for the first time. The oxidation process of MXenes is clearly displayed at the atomic level. Free protons and oxides greatly inhibit subsequent oxidation reactions, leading to the degree of oxidation of MXenes to exponentially decay with time, which is consistent with the oxidation rate of MXenes measured experimentally. Importantly, this computational study represents the first exploration of the kinetic process of oxidation of super‐sized aqueous MXene systems. It opens a promising avenue for the future development of effective protection strategies aimed at controlling the stability of MXenes.more » « less
- 
            Evolution of Surface Chemistry in Two‐Dimensional MXenes: From Mixed to Tunable Uniform TerminationsAbstract Surface chemistry of MXenes is of great interest as the terminations can define the intrinsic properties of this family of materials. The diverse and tunable terminations also distinguish MXenes from many other 2D materials. Conventional fluoride‐containing reagents etching approaches resulted in MXenes with mixed fluoro‐, oxo‐, and hydroxyl surface groups. The relatively strong chemical bonding of MXenes’ surface metal atoms with oxygen and fluorine makes post‐synthetic covalent surface modifications of such MXenes unfavorable. In this minireview, we focus on the recent advances in MXenes with uniform surface terminations. Unconventional methods, including Lewis acidic molten salt etching (LAMS) and bottom‐up direct synthesis, have been proven successful in producing halide‐terminated MXenes. These synthetic strategies have opened new possibilities for MXenes because weaker surface chemical bonds in halide‐terminated MXenes facilitate post‐synthetic covalent surface modifications. Both computational and experimental results on surface termination‐dependent properties are summarized and discussed. Finally, we offer our perspective on the opportunities and challenges in this exciting research field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
