skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 22, 2026

Title: A new zero-free region for Rankin–Selberg 𝐿-functions
Abstract Let 𝜋 and π \pi^{\prime}be cuspidal automorphic representations of GL ( n ) \mathrm{GL}(n)and GL ( n ) \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all GL ( 1 ) \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L ( s , π × π ) L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of L ( s , π × π ) / L ( s , π × π ) -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n 8 n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L ( s , π , Sym n χ ) L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of GL ( 2 ) \mathrm{GL}(2).  more » « less
Award ID(s):
2401311
PAR ID:
10617134
Author(s) / Creator(s):
;
Publisher / Repository:
De Gruyter Brill
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
ISSN:
0075-4102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a distributional Jacobian determinant det D V β ( D v ) \det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradient V β ( D v ) = | D v | β ( v x 1 , v x 2 ) V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for any β > 1 \beta>-1, whenever v W loc 1 , 2 v\in W^{1\smash{,}2}_{\mathrm{loc}}and β | D v | 1 + β W loc 1 , 2 \beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new when β 0 \beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant det D V β ( D u ) \det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications. Applying this result with β = 0 \beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the whole R 2 \mathbb{R}^{2}with lim inf R inf c R 1 R B ( 0 , R ) | u ( x ) c | d x < , \liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,then u = b + a x u=b+a\cdot xfor some b R b\in\mathbb{R}and a R 2 a\in\mathbb{R}^{2}.Denoting by u p u_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show that det D V β ( D u p ) det D V β ( D u ) \det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)as p p\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall that V β ( D u p ) V_{\beta}(Du_{p})is always quasiregular mappings, but V β ( D u ) V_{\beta}(Du)is not in general. 
    more » « less
  2. Abstract We show that the affine vertex superalgebra V k ( o s p 1 | 2 n ) V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of s p 2 n \mathfrak{sp}_{2n}times 4 n 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset Com ( V k ( s p 2 n ) , V k ( o s p 1 | 2 n ) ) \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to W ( s p 2 n ) \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for = ( n + 1 ) + ( k + n + 1 ) / ( 2 k + 2 n + 1 ) \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V k ( o s p 1 | 2 n ) V^{k}(\mathfrak{osp}_{1|2n})-modules into V k ( s p 2 n ) W ( s p 2 n ) V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for s p 2 n \mathfrak{sp}_{2n}, we show that the simple algebra L k ( o s p 1 | 2 n ) L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L k ( s p 2 n ) W ( s p 2 n ) L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L k ( o s p 1 | 2 n ) L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of W ( s p 2 n ) \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L k ( s p 2 n ) L_{k}(\mathfrak{sp}_{2n})-modules are rigid. 
    more » « less
  3. Abstract Let E / Q \mathrm{E}/\mathbb{Q}be an elliptic curve and 𝑝 a prime of supersingular reduction for E \mathrm{E}.Consider a quadratic extension L / Q p L/\mathbb{Q}_{p}and the corresponding anticyclotomic Z p \mathbb{Z}_{p}-extension L / L L_{\infty}/L.We analyze the structure of the points E ( L ) \mathrm{E}(L_{\infty})and describe two global implications of our results. 
    more » « less
  4. Abstract LetXbe acompact orientable non-Haken 3-manifold modeled on the Thurston geometry Nil {\operatorname{Nil}}. We show that the diffeomorphism group Diff ( X ) {\operatorname{Diff}(X)}deformation retracts to the isometry group Isom ( X ) {\operatorname{Isom}(X)}. Combining this with earlier work by many authors, this completes the determination the homotopy type of Diff ( X ) {\operatorname{Diff}(X)}for any compact, orientable, prime 3-manifoldX. 
    more » « less
  5. Abstract We extend the Calderón–Zygmund theory for nonlocal equations tostrongly coupled system of linear nonlocal equations A s u = f {\mathcal{L}^{s}_{A}u=f}, where the operator A s {\mathcal{L}^{s}_{A}}is formally given by A s u = n A ( x , y ) | x - y | n + 2 s ( x - y ) ( x - y ) | x - y | 2 ( u ( x ) - u ( y ) ) 𝑑 y . \mathcal{L}^{s}_{A}u=\int_{\mathbb{R}^{n}}\frac{A(x,y)}{|x-y|^{n+2s}}\frac{(x-%y)\otimes(x-y)}{|x-y|^{2}}(u(x)-u(y))\,dy. For 0 < s < 1 {0<1}and A : n × n {A:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}}taken to be symmetric and serving asa variable coefficient for the operator, the system under consideration is the fractional version of the classical Navier–Lamé linearized elasticity system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal mechanics, primarily in peridynamics. Our regularity result states that if A ( , y ) {A(\,\cdot\,,y)}is uniformly Holder continuous and inf x n A ( x , x ) > 0 {\inf_{x\in\mathbb{R}^{n}}A(x,x)>0}, then for f L loc p {f\in L^{p}_{\rm loc}}, for p 2 {p\geq 2}, the solution vector u H loc 2 s - δ , p {u\in H^{2s-\delta,p}_{\rm loc}}for some δ ( 0 , s ) {\delta\in(0,s)}. 
    more » « less