skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 31, 2025

Title: Multi‐Trophic Level Responses to Marine Heatwave Disturbances in the California Current Ecosystem
ABSTRACT Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time‐series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (exceptingProchlorococcus) and were generally more sensitive to marine heatwave intensity than duration. By contrast, mesozooplankton (as estimated by zooplankton displacement volume) were somewhat more strongly correlated with MHW duration than intensity. Zooplankton anomalies were also positively correlated with fucoxanthin (diatom) anomalies, highlighting possible bottom‐up influences during MHWs. Mobile consumers (forage fish) showed more complex responses, with fish egg abundance declining during MHWs but not correlating with any MHW characteristics. Our findings provide partial evidence of how MHW characteristics can shape variable ecological responses due to the differing life spans and behaviours of different trophic levels.  more » « less
Award ID(s):
2224726
PAR ID:
10617148
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
12
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schijf, Johan (Ed.)
    Marine heatwaves (MHWs) are warm sea surface temperature (SST) anomalies with substantial ecological and economic consequences. Observations of MHWs are based on relatively short instrumental records, which limit the ability to forecast these events on decadal and longer timescales. Paleoclimate reconstructions can extend the observational record and help to evaluate model performance under near future conditions, but paleo-MHW reconstructions have received little attention, primarily because marine sediments lack the temporal resolution to record short-lived events. Individual foraminifera analysis (IFA) of paleotemperature proxies presents an intriguing opportunity to reconstruct past MHW variability if strong relationships exist between SST distributions and MHW metrics. Here, we describe a method to test this idea by systematically evaluating relationships between MHW metrics and SST distributions that mimic IFA data using a 2000-member linear inverse model (LIM) ensemble. Our approach is adaptable and allows users to define MHWs based on multiple duration and intensity thresholds and to model seasonal biases in five different foraminifera species. It also allows uncertainty in MHW reconstructions to be calculated for a given number of IFA measurements. An example application of our method at 12 north Pacific locations suggests that the cumulative intensity of short-duration, low-intensity MHWs is the strongest target for reconstruction, but that the error on reconstructions will rely heavily on sedimentation rate and the number of foraminifera analyzed. This is evident when a robust transfer function is applied to new core-top oxygen isotope data from 37 individualGlobigerina bulloidesat a site with typical marine sedimentation rates. In this example application, paleo-MHW reconstructions have large uncertainties that hamper comparisons to observational data. However, additional tests demonstrate that our approach has considerable potential to reconstruct past MHW variability at high sedimentation rate sites where hundreds of foraminifera can be analyzed. 
    more » « less
  2. Abstract In the past decade, two large marine heatwaves (MHWs) formed in the northeast Pacific near Ocean Station Papa (OSP), one of the oldest oceanic time series stations. Physical, biogeochemical, and biological parameters observed at OSP from 2013 to 2020 are used to assess ocean response and potential impacts on marine life from the 2019 northeast Pacific MHW. The 2019 MHW reached peak surface and subsurface temperature anomalies in the summertime and had both coastal, impacting fisheries, and offshore consequences that could potentially affect multiple trophic levels in the Gulf of Alaska. In the Gulf of Alaska, the 2019 MHW was preceded by calm and stratified upper ocean conditions, which preconditioned the enhanced surface warming in late spring and early summer. The MHW coincided with lower dissolved inorganic carbon and higher pH of surface waters relative to the 2013–2020 period. A spike in the summertime chlorophyll followed by a decrease in surface macronutrients suggests increased productivity in the well‐lit stratified upper ocean during summer 2019. More blue whale calls were recorded at OSP in 2019 compared to the prior year. This study shows how the utility of long‐term, continuous oceanographic data sets and analysis with an interdisciplinary lens is necessary to understand the potential impact of MHWs on marine ecosystems. 
    more » « less
  3. Under future climate scenarios, ocean temperatures that are presently extreme and qualify as marine heatwaves (MHW) are forecasted to increase in frequency and intensity, but little is known about the impact of these events on one of the most common paleoproxies, planktonic foraminifera. Planktonic foraminifera are globally ubiquitous, shelled marine protists. Their abundances and geochemistry vary with ocean conditions and fossil specimens are commonly used to reconstruct ancient ocean conditions. Planktonic foraminiferal assemblages are known to vary globally with sea surface temperature, primary productivity, and other hydrographic conditions, but have not been studied in the context of mid-latitude MHWs. For this study, the community composition and abundance of planktonic foraminifera were quantified for 2010-2019 along the Newport Hydrographic Line, a long-term monitoring transect at 44.6°N in the Northern California Current (NCC). Samples were obtained from archived plankton tows spanning 46 to 370 km offshore during annual autumn (August – October) cruises. Two MHWs impacted the region during this timeframe: the first during 2014-2016 and a second, shorter duration MHW in 2019. During the 2014-2016 MHW, warm water subtropical and tropical foraminifera species were more prevalent than the typical polar, subpolar, and transitional species common to this region. Cold water species were abundant again after the first MHW dissipated in late 2016. During the second, shorter-duration MHW in 2019, the assemblage consisted of a warm water assemblage but did not include tropical species. The foraminiferal assemblage variability correlated with changes in temperature and salinity in the upper 100 meters and was not correlated with distance offshore or upwelling. These results suggest that fossil foraminiferal assemblages from deep sea sediment cores may provide insight into the magnitude and frequency of past MHWs. 
    more » « less
  4. Abstract Marine heatwaves (MHWs) are increasing in frequency and intensity globally and are among the greatest threats to marine ecosystems. However, limited studies have characterized subsurface MHWs, particularly in shallow waters. We utilized nearly two decades of full water-column (~ 10 m) observations from a unique automated profiler in central California to characterize, for the first time, the vertical structure of MHWs in a shallow nearshore upwelling system. We found MHWs have similar average durations and intensities across all depths, but there were ~ 17% more bottom MHW days than surface MHW days. Nearly one third of bottom MHWs occurred independently of surface MHWs, indicating that satellites miss a significant fraction of events. MHWs showed distinct seasonality with more frequent and intense events during the fall/winter when weak stratification allowed for MHWs to occupy a larger portion of the water column and persist longer. During summer, strong stratification limited the vertical extent of MHWs, leading to surface- and bottom-trapped events with shorter durations and intensities. Additionally, MHW initiation and termination across depths was consistently linked to anomalously low and high coastal upwelling, respectively. This study highlights the need for expansion of subsurface monitoring of MHWs globally amid a warming planet. 
    more » « less
  5. Abstract During 2013–16 and 2018–22, marine heatwaves (MHWs) occurred in the North Pacific, exhibiting similar extensive coverage, lengthy duration, and significant intensity but with different warming centers. The warming center of the 2013–16 event was in the Gulf of Alaska (GOA), while the 2018–22 event had warming centers in both the GOA and the coast of Japan (COJ). Our observational analysis indicates that these two events can be considered as two MHW variants induced by a basinwide MHW conditioning mode in the North Pacific. Both variants were driven thermodynamically by atmospheric wave trains propagating from the tropical Pacific to the North Pacific, within the conditioning mode. The origin and propagating path of these wave trains play a crucial role in determining the specific type of MHW variant. When a stronger wave train originates from the tropical central (western) Pacific, it leads to the GOA (COJ) variant. The cross-basin nature of the wave trains enables the two MHW variants to be accompanied by a tripolar pattern of sea surface temperature anomalies in the North Atlantic but with opposite phases. The association of these two MHW variants with the Atlantic Ocean also manifests in the decadal variations of their occurrence. Both variants tend to occur more frequently during the positive phase of the Atlantic multidecadal oscillation but less so during the negative phase. This study underscores the importance of cross-basin associations between the North Pacific and North Atlantic in shaping the dynamics of North Pacific MHWs. 
    more » « less