The decision to stop growing and mature into an adult is a critical point in development that determines adult body size, impacting multiple aspects of an adult’s biology. In many animals, growth cessation is a consequence of hormone release that appears to be tied to the attainment of a particular body size or condition. Nevertheless, the size-sensing mechanism animals use to initiate hormone synthesis is poorly understood. Here, we develop a simple mathematical model of growth cessation inDrosophila melanogaster, which is ostensibly triggered by the attainment of a critical weight (CW) early in the last instar. Attainment of CW is correlated with the synthesis of the steroid hormone ecdysone, which causes a larva to stop growing, pupate, and metamorphose into the adult form. Our model suggests that, contrary to expectation, the size-sensing mechanism that initiates metamorphosis occurs before the larva reaches CW; that is, the critical-weight phenomenon is a downstream consequence of an earlier size-dependent developmental decision, not a decision point itself. Further, this size-sensing mechanism does not require a direct assessment of body size but emerges from the interactions between body size, ecdysone, and nutritional signaling. Because many aspects of our model are evolutionarily conserved among all animals, the model may provide a general framework for understanding how animals commit to maturing from their juvenile to adult form.
more »
« less
HIF signaling in the prothoracic gland regulates growth and development in hypoxia but not normoxia in Drosophila
ABSTRACT The developmental regulation of body size is a fundamental life-history characteristic that in most animals is tied to the transition from juvenile to adult form. In holometabolous insects, this transition is ostensibly initiated at the attainment of a critical weight in the final larval instar. It has been hypothesized that the size-sensing mechanism used to determine attainment of critical weight exploits oxygen limitation as a larvae grows beyond the oxygen-delivery capacity of its fixed tracheal system; that is, developmentally induced cellular hypoxia initiates the synthesis of the molting hormone ecdysone by the prothoracic gland. We tested this hypothesis in Drosophila by assaying cellular hypoxia throughout the third larval instar at 21 and 10 kPa O2, using the activity of the HIF (hypoxia inducible factor)-signaling pathway as a measure of hypoxia. While HIF signaling was elevated at low levels of environmental O2, it did not markedly increase during development at either oxygen level, and was only suppressed by hyperoxia after feeding had ceased. Further, changes in HIF signaling in the prothoracic gland alone did not alter body size or developmental time in a way that would be expected if cellular hypoxia in the prothoracic gland was part of the critical weight mechanism. Our data do show, however, that reduced HIF signaling in the prothoracic gland decreases survival and retards development at 10 kPa O2, suggesting that prothoracic HIF signaling is a necessary part of the beneficial plasticity mechanism that controls growth and development in response to low oxygen level.
more »
« less
- Award ID(s):
- 1952385
- PAR ID:
- 10617232
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 227
- Issue:
- 18
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.more » « less
-
Abstract In almost all animals, physiologically low oxygen (hypoxia) during development slows growth and reduces adult body size. The developmental mechanisms that determine growth under hypoxic conditions are, however, poorly understood. Here we show that the growth and body size response to moderate hypoxia (10% O 2 ) in Drosophila melanogaster is systemically regulated via the steroid hormone ecdysone. Hypoxia increases level of circulating ecdysone and inhibition of ecdysone synthesis ameliorates the negative effect of low oxygen on growth. We also show that the effect of ecdysone on growth under hypoxia is through suppression of the insulin/IGF-signaling pathway, via increased expression of the insulin-binding protein Imp-L2 . These data indicate that growth suppression in hypoxic Drosophila larvae is accomplished by a systemic endocrine mechanism that overlaps with the mechanism that slows growth at low nutrition. This suggests the existence of growth-regulatory mechanisms that respond to general environmental perturbation rather than individual environmental factors.more » « less
-
The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 8C (15 mM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (32 mM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 8C. Euphausia diomedeae survived 1.6 kPa PO2 (22 mM O2) at 228C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 8C, n¼2) and lactate accumulation (1.1 kPa, 10 8C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by 49–64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change.more » « less
-
Metazoans respond to hypoxic stress via the Hypoxia Inducible Factor (HIF) pathway, a mechanism thought to be extremely conserved due to its importance in monitoring cellular oxygen levels and regulating responses to hypoxia. However, recent work revealed that key members of the HIF pathway have been lost in specific lineages (a tardigrade and a copepod), suggesting this pathway is not as widespread in animals as previously assumed. Using genomic and transcriptomic data from 70 different species across 12 major crustacean groups, we assessed the degree to which the gene HIFα, the master regulator of the HIF pathway, was conserved. Mining of protein domains, followed by phylogenetic analyses of gene families, uncovered group-level losses of HIFα, including one across three orders within Cirripedia, and in three orders within Copepoda. For these groups, additional assessment showed losses of HIF repression machinery (EGLN, VHL). These results suggest the existence of alternative mechanisms for cellular response to low oxygen, and highlight these taxa as models useful for probing these evolutionary outcomes.more » « less
An official website of the United States government

