skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 21, 2026

Title: Collaborative large language models for automated data extraction in living systematic reviews
Abstract ObjectiveData extraction from the published literature is the most laborious step in conducting living systematic reviews (LSRs). We aim to build a generalizable, automated data extraction workflow leveraging large language models (LLMs) that mimics the real-world 2-reviewer process. Materials and MethodsA dataset of 10 trials (22 publications) from a published LSR was used, focusing on 23 variables related to trial, population, and outcomes data. The dataset was split into prompt development (n = 5) and held-out test sets (n = 17). GPT-4-turbo and Claude-3-Opus were used for data extraction. Responses from the 2 LLMs were considered concordant if they were the same for a given variable. The discordant responses from each LLM were provided to the other LLM for cross-critique. Accuracy, ie, the total number of correct responses divided by the total number of responses, was computed to assess performance. ResultsIn the prompt development set, 110 (96%) responses were concordant, achieving an accuracy of 0.99 against the gold standard. In the test set, 342 (87%) responses were concordant. The accuracy of the concordant responses was 0.94. The accuracy of the discordant responses was 0.41 for GPT-4-turbo and 0.50 for Claude-3-Opus. Of the 49 discordant responses, 25 (51%) became concordant after cross-critique, increasing accuracy to 0.76. DiscussionConcordant responses by the LLMs are likely to be accurate. In instances of discordant responses, cross-critique can further increase the accuracy. ConclusionLarge language models, when simulated in a collaborative, 2-reviewer workflow, can extract data with reasonable performance, enabling truly “living” systematic reviews.  more » « less
Award ID(s):
2144923
PAR ID:
10617321
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
NLM
Date Published:
Journal Name:
Journal of the American Medical Informatics Association
Volume:
32
Issue:
4
ISSN:
1067-5027
Page Range / eLocation ID:
638 to 647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationLarge language models (LLMs) are being adopted at an unprecedented rate, yet still face challenges in knowledge-intensive domains such as biomedicine. Solutions such as pretraining and domain-specific fine-tuning add substantial computational overhead, requiring further domain-expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) framework by leveraging a massive biomedical KG (SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo, and GPT-4, to generate meaningful biomedical text rooted in established knowledge. ResultsCompared to the existing RAG technique for Knowledge Graphs, the proposed method utilizes minimal graph schema for context extraction and uses embedding methods for context pruning. This optimization in context extraction results in more than 50% reduction in token consumption without compromising the accuracy, making a cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG consistently enhanced the performance of LLMs across diverse biomedical prompts by generating responses rooted in established knowledge, accompanied by accurate provenance and statistical evidence (if available) to substantiate the claims. Further benchmarking on human curated datasets, such as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the framework’s capacity to empower open-source models with fewer parameters for domain-specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 and GPT-4. In summary, the proposed framework combines explicit and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective fashion. Availability and implementationSPOKE KG can be accessed at https://spoke.rbvi.ucsf.edu/neighborhood.html. It can also be accessed using REST-API (https://spoke.rbvi.ucsf.edu/swagger/). KG-RAG code is made available at https://github.com/BaranziniLab/KG_RAG. Biomedical benchmark datasets used in this study are made available to the research community in the same GitHub repository. 
    more » « less
  2. As large language models (LLMs) expand the power of natural language processing to handle long inputs, rigorous and systematic analyses are necessary to understand their abilities and behavior. A salient application is summarization, due to its ubiquity and controversy (e.g., researchers have declared the death of summarization). In this paper, we use financial report summarization as a case study because financial reports are not only long but also use numbers and tables extensively. We propose a computational framework for characterizing multimodal long-form summarization and investigate the behavior of Claude 2.0/2.1, GPT-4/3.5, and Cohere. We find that GPT-3.5 and Cohere fail to perform this summarization task meaningfully. For Claude 2 and GPT-4, we analyze the extractiveness of the summary and identify a position bias in LLMs. This position bias disappears after shuffling the input for Claude, which suggests that Claude seems to recognize important information. We also conduct a comprehensive investigation on the use of numeric data in LLM-generated summaries and offer a taxonomy of numeric hallucination. We employ prompt engineering to improve GPT-4's use of numbers with limited success. Overall, our analyses highlight the strong capability of Claude 2 in handling long multimodal inputs compared to GPT-4. The generated summaries and evaluation code are available at https://github.com/ChicagoHAI/characterizing-multimodal-long-form-summarization. 
    more » « less
  3. Large language models (LLM) are perceived to offer promising potentials for automating security tasks, such as those found in security operation centers (SOCs). As a first step towards evaluating this perceived potential, we investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code. We hypothesize that an LLM-based AI agent can be improved over time for a specific security task as human operators interact with it. Such improvement can be made, as a first step, by engineering prompts fed to the LLM based on the responses produced, to include relevant contexts and structures so that the model provides more accurate results. Such engineering efforts become sustainable if the prompts that are engineered to produce better results on current tasks, also produce better results on future unknown tasks. To examine this hypothesis, we utilize the OWASP Benchmark Project 1.2 which contains 2,740 hand-crafted source code test cases containing various types of vulnerabilities. We divide the test cases into training and testing data, where we engineer the prompts based on the training data (only), and evaluate the final system on the testing data. We compare the AI agent’s performance on the testing data against the performance of the agent without the prompt engineering. We also compare the AI agent’s results against those from SonarQube, a widely used static code analyzer for security testing. We built and tested multiple versions of the AI agent using different off-the-shelf LLMs – Google’s Gemini-pro, as well as OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo (with both chat completion and assistant APIs). The results show that using LLMs is a viable approach to build an AI agent for software pentesting that can improve through repeated use and prompt engineering. 
    more » « less
  4. Exposing students to low-quality assessments such as multiple-choice questions (MCQs) and short answer questions (SAQs) is detrimental to their learning, making it essential to accurately evaluate these assessments. Existing evaluation methods are often challenging to scale and fail to consider their pedagogical value within course materials. Online crowds offer a scalable and cost-effective source of intelligence, but often lack necessary domain expertise. Advancements in Large Language Models (LLMs) offer automation and scalability, but may also lack precise domain knowledge. To explore these trade-offs, we compare the effectiveness and reliability of crowdsourced and LLM-based methods for assessing the quality of 30 MCQs and SAQs across six educational domains using two standardized evaluation rubrics. We analyzed the performance of 84 crowdworkers from Amazon's Mechanical Turk and Prolific, comparing their quality evaluations to those made by the three LLMs: GPT-4, Gemini 1.5 Pro, and Claude 3 Opus. We found that crowdworkers on Prolific consistently delivered the highest-quality assessments, and GPT-4 emerged as the most effective LLM for this task. Our study reveals that while traditional crowdsourced methods often yield more accurate assessments, LLMs can match this accuracy in specific evaluative criteria. These results provide evidence for a hybrid approach to educational content evaluation, integrating the scalability of AI with the nuanced judgment of humans. We offer feasibility considerations in using AI to supplement human judgment in educational assessment. 
    more » « less
  5. Abstract The widespread adoption of conversational LLMs for software development has raised new security concerns regarding the safety of LLM-generated content. Our motivational study outlines ChatGPT’s potential in volunteering context-specific information to the developers, promoting safe coding practices. Motivated by this finding, we conduct a study to evaluate the degree of security awareness exhibited by three prominent LLMs: Claude 3, GPT-4, and Llama 3. We prompt these LLMs with Stack Overflow questions that contain vulnerable code to evaluate whether they merely provide answers to the questions or if they also warn users about the insecure code, thereby demonstrating a degree of security awareness. Further, we assess whether LLM responses provide information about the causes, exploits, and the potential fixes of the vulnerability, to help raise users’ awareness. Our findings show that all three models struggle to accurately detect and warn users about vulnerabilities, achieving a detection rate of only 12.6% to 40% across our datasets. We also observe that the LLMs tend to identify certain types of vulnerabilities related to sensitive information exposure and improper input neutralization much more frequently than other types, such as those involving external control of file names or paths. Furthermore, when LLMs do issue security warnings, they often provide more information on the causes, exploits, and fixes of vulnerabilities compared to Stack Overflow responses. Finally, we provide an in-depth discussion on the implications of our findings, and demonstrated a CLI-based prompting tool that can be used to produce more secure LLM responses. 
    more » « less