Abstract In this paper, we explore the non-asymptotic global convergence rates of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method implemented with exact line search. Notably, due to Dixon’s equivalence result, our findings are also applicable to other quasi-Newton methods in the convex Broyden class employing exact line search, such as the Davidon-Fletcher-Powell (DFP) method. Specifically, we focus on problems where the objective function is strongly convex with Lipschitz continuous gradient and Hessian. Our results hold for any initial point and any symmetric positive definite initial Hessian approximation matrix. The analysis unveils a detailed three-phase convergence process, characterized by distinct linear and superlinear rates, contingent on the iteration progress. Additionally, our theoretical findings demonstrate the trade-offs between linear and superlinear convergence rates for BFGS when we modify the initial Hessian approximation matrix, a phenomenon further corroborated by our numerical experiments.
more »
« less
This content will become publicly available on January 21, 2026
Accuracy Controlled Schemes for the Eigenvalue Problem of the Radiative Transfer Equation
Abstract The criticality problem in nuclear engineering asks for the principal eigenpair of a Boltzmann operator describing neutron transport in a reactor core. Being able to reliably design, and control such reactors requires assessing these quantities within quantifiable accuracy tolerances. In this paper, we propose a paradigm that deviates from the common practice of approximately solving the corresponding spectral problem with a fixed, presumably sufficiently fine discretization. Instead, the present approach is based on first contriving iterative schemes, formulated in function space, that are shown to converge at a quantitative rate without assuming any a priori excess regularity properties, and that exploit only properties of the optical parameters in the underlying radiative transfer model. We develop the analytical and numerical tools for approximately realizing each iteration step within judiciously chosen accuracy tolerances, verified by a posteriori estimates, so as to still warrant quantifiable convergence to the exact eigenpair. This is carried out in full first for a Newton scheme. Since this is only locally convergent we analyze in addition the convergence of a power iteration in function space to produce sufficiently accurate initial guesses. Here we have to deal with intrinsic difficulties posed by compact but unsymmetric operators preventing standard arguments used in the finite dimensional case. Our main point is that we can avoid any condition on an initial guess to be already in a small neighborhood of the exact solution. We close with a discussion of remaining intrinsic obstructions to a certifiable numerical implementation, mainly related to not knowing the gap between the principal eigenvalue and the next smaller one in modulus.
more »
« less
- PAR ID:
- 10617322
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Foundations of Computational Mathematics
- ISSN:
- 1615-3375
- Subject(s) / Keyword(s):
- Eigenvalue problem Spectral problem Neutron transport Radiative transfer Error-controlled computation A posteriori estimation Iteration in function space
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analyzing properties of an underlying generic stochastic process; in particular, we derive a bound on the expected stopping time of this process. We utilize this framework to analyze the expected global convergence rates of a stochastic variant of a traditional trust-region method. Although traditional trust-region methods rely on exact computations of the gradient, Hessian, and values of the objective function, this method assumes that these values are available only up to some dynamically adjusted accuracy. Moreover, this accuracy is assumed to hold only with some sufficiently large—but fixed—probability without any additional restrictions on the variance of the errors. This setting applies, for example, to standard stochastic optimization and machine learning formulations. Improving upon prior analysis, we show that the stochastic process defined by the trust-region method satisfies the assumptions of our proposed general framework. The stopping time in this setting is defined by an iterate satisfying a first-order accuracy condition. We demonstrate the first global complexity bound for a stochastic trust-region method under the assumption of sufficiently accurate stochastic gradients. Finally, we apply the same framework to derive second-order complexity bounds under additional assumptions. Previousmore » « less
-
We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analyzing properties of an underlying generic stochastic process; in particular, we derive a bound on the expected stopping time of this process. We utilize this framework to analyze the expected global convergence rates of a stochastic variant of a traditional trust-region method. Although traditional trust-region methods rely on exact computations of the gradient, Hessian, and values of the objective function, this method assumes that these values are available only up to some dynamically adjusted accuracy. Moreover, this accuracy is assumed to hold only with some sufficiently large—but fixed—probability without any additional restrictions on the variance of the errors. This setting applies, for example, to standard stochastic optimization and machine learning formulations. Improving upon prior analysis, we show that the stochastic process defined by the trust-region method satisfies the assumptions of our proposed general framework. The stopping time in this setting is defined by an iterate satisfying a first-order accuracy condition. We demonstrate the first global complexity bound for a stochastic trust-region method under the assumption of sufficiently accurate stochastic gradients. Finally, we apply the same framework to derive second-order complexity bounds under additional assumptions.more » « less
-
In this paper, we study the application of quasi-Newton methods for solving empirical risk minimization (ERM) problems defined over a large dataset. Traditional deterministic and stochastic quasi-Newton methods can be executed to solve such problems; however, it is known that their global convergence rate may not be better than first-order methods, and their local superlinear convergence only appears towards the end of the learning process. In this paper, we use an adaptive sample size scheme that exploits the superlinear convergence of quasi-Newton methods globally and throughout the entire learning process. The main idea of the proposed adaptive sample size algorithms is to start with a small subset of data points and solve their corresponding ERM problem within its statistical accuracy, and then enlarge the sample size geometrically and use the optimal solution of the problem corresponding to the smaller set as an initial point for solving the subsequent ERM problem with more samples. We show that if the initial sample size is sufficiently large and we use quasi-Newton methods to solve each subproblem, the subproblems can be solved superlinearly fast (after at most three iterations), as we guarantee that the iterates always stay within a neighborhood that quasi-Newton methods converge superlinearly. Numerical experiments on various datasets confirm our theoretical results and demonstrate the computational advantages of our method.more » « less
-
This paper is concerned with the numerical solution of the flow problem in a fractured porous medium where the fracture is treated as a lower dimensional object embedded in the rock matrix. We consider a space-time mixed variational formulation of such a reduced fracture model with mixed finite element approximations in space and discontinuous Galerkin discretization in time. Different spatial and temporal grids are used in the subdomains and in the fracture to adapt to the heterogeneity of the problem. Analysis of the numerical scheme, including well-posedness of the discrete problem, stability and a priori error estimates, is presented. Using substructuring techniques, the coupled subdomain and fracture system is reduced to a space-time interface problem which is solved iteratively by GMRES. Each GMRES iteration involves solution of time-dependent problems in the subdomains using the method of lines with local spatial and temporal discretizations. The convergence of GMRES is proved by using the field-of-values analysis and the properties of the discrete space-time interface operator. Numerical experiments are carried out to illustrate the performance of the proposed iterative algorithm and the accuracy of the numerical solution.more » « less
An official website of the United States government
