ABSTRACT Animal coloration is a complex phenotype that may be affected by genetics, evolution, ecology, and environment. Disentangling the impact of environment on phenotype can often be done in laboratory studies, but the results do not necessarily correspond to the natural variation present in the wild. Painted turtles are a brightly colored freshwater species that inhabit a variety of environments in North America. There is known to be plasticity in the melanin coloration of the shell of painted turtles in a lab setting, but this has not been measured in the wild. The bright skin coloration that gives painted turtles their name is caused by carotenoids, which can only be obtained from an organism's diet in vertebrates. Though the availability of carotenoids likely varies between environments, and there is evidence that some of the carotenoid‐based coloration in this species is a visual signal, it is unknown if or how environmental variation impacts coloration in the wild. To address this, we measured the effect of the environment on turtle coloration by assessing multiple populations of painted turtles in northern Wisconsin. We measured water clarity and aquatic plant density at each site where turtles were caught. We found that females had brighter carapaces than males, and that plastron brightness varied with water clarity and plant density, despite its ventral orientation. We also found that neither water clarity nor plant density predicted carotenoid chroma, despite reason to believe that light environment and carotenoid availability should impact a visual signal. These findings suggest that colorful phenotypic traits in this turtle species are complex and their potential role as visual signals requires more research. It is crucial to understand the different phenotypes of painted turtles since coloration may influence fitness in this species, and since laboratory studies are unable to represent natural variation.
more »
« less
This content will become publicly available on January 1, 2026
Coloration is highly variable but is not always an honest signal in the painted turtle, Chrysemys Picta
Color signals in animals are often honest, containing information about the individual for potential mates or predators. Both males and females may have honest color signals, though female signals are less often assessed for honesty. Different colorimetric traits, such as overall brightness, hue, ultraviolet brightness, or carotenoid chroma, may be assessed by receivers for information. Painted Turtles, Chrysemys picta (Schneider, 1783), are a brightly colored and widely distributed freshwater turtle species with no visible sexual dichromatism, but the function of their coloration is unknown. We assess two populations of Painted Turtles to compare colorimetric traits across and within populations, and to determine whether any color traits correlate with innate immune function. We find that there is greater carotenoid chroma on areas of the shell not typically associated with courtship than on the neck stripes that are thought to have a role in mate choice. We also find that only one measure of coloration in one color patch, the carotenoid chroma of the neck stripes, is correlated with bactericidal capacity, and in only one population. This system provides an example of a common species having vibrant but understudied coloration that may provide insights into unknown functions of color or uncommon sexual selection variation.
more »
« less
- Award ID(s):
- 2233233
- PAR ID:
- 10617596
- Publisher / Repository:
- Canadian Science Publishing
- Date Published:
- Journal Name:
- Canadian Journal of Zoology
- Volume:
- 103
- ISSN:
- 0008-4301
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis In many species of birds, red carotenoid coloration serves as an honest signal of individual quality, but the mechanisms that link carotenoid coloration to animal performance remain poorly understood. Most birds that display red carotenoid coloration of feathers, bills, or legs ingest yellow carotenoids and metabolically convert the yellow pigments to red. Here, we review two lines of investigation that have rapidly advanced understanding of the production of red carotenoid coloration in birds, potentially providing an explanation for how red coloration serves as a signal of quality: the identification of the genes that enable birds to be red and the confirmation of links between production of red pigments and core cellular function. CYP2J19 and BDH1L were identified as key enzymes that catalyze the conversion of yellow carotenoids to red carotenoids both in the retinas of birds for enhanced color vision and in the feathers and bills of birds for ornamentation. This CYP2J19 and BDH1L pathway was shown to be the mechanism for production of red coloration in diverse species of birds and turtles. In other studies, it was shown that male House Finches (Haemorhous mexicanus) have high concentrations of red carotenoids within liver mitochondria and that redness is positively associated with mitochondrial function. These observations suggested that the CYP2J19 and BDH1L pathway might be tightly associated with mitochondrial function. However, it was subsequently discovered that male House Finches do not use the CYP2J19 and BDH1L pathway to produce red pigments and that both CYP2J19 and BDH1L localize in the endoplasmic reticulum, not the mitochondria. Thus, we have the most detailed understanding of links between cellular function and redness in a bird species for which the enzymes to convert yellow to red pigments remain unknown, while we have the best understanding of the enzymatic pathways to red in species for which links to cellular function are largely unstudied. Deducing whether and how signals of quality arise from these distinct mechanisms of ornamental coloration is a current challenge for scientists interested in the evolution of honest signaling.more » « less
-
Abstract Carotenoid pigments are the basis for much red, orange, and yellow coloration in nature and central to visual signaling. However, as pigment concentration increases, carotenoid signals not only darken and become more saturated but they also redshift; for example, orange pigments can look red at higher concentration. This occurs because light experiences exponential attenuation, and carotenoid‐based signals have spectrally asymmetric reflectance in the visible range. Adding pigment disproportionately affects the high‐absorbance regions of the reflectance spectra, which redshifts the perceived hue. This carotenoid redshift is substantial and perceivable by animal observers. In addition, beyond pigment concentration, anything that increases the path length of light through pigment causes this redshift (including optical nano‐ and microstructures). For example, maleRamphocelustanagers appear redder than females, despite the same population and concentration of carotenoids, due to microstructures that enhance light–pigment interaction. This mechanism of carotenoid redshift has sensory and evolutionary consequences for honest signaling in that structures that redshift carotenoid ornaments may decrease signal honesty. More generally, nearly all colorful signals vary in hue, saturation, and brightness as light–pigment interactions change, due to spectrally asymmetrical reflectance within the visible range of the relevant species. Therefore, the three attributes of color need to be considered together in studies of honest visual signaling.more » « less
-
ABSTRACT Even as numerous studies have documented that the red and yellow coloration resulting from the deposition of carotenoids serves as an honest signal of condition, the evolution of condition dependency is contentious. The resource trade‐off hypothesis proposes that condition‐dependent honest signalling relies on a trade‐off of resources between ornamental display and body maintenance. By this model, condition dependency can evolve through selection for a re‐allocation of resources to promote ornament expression. By contrast, the index hypothesis proposes that selection focuses mate choice on carotenoid coloration that is inherently condition dependent because production of such coloration is inexorably tied to vital cellular processes. These hypotheses for the origins of condition dependency make strongly contrasting and testable predictions about ornamental traits. To assess these two models, we review the mechanisms of production of carotenoids, patterns of condition dependency involving different classes of carotenoids, and patterns of behavioural responses to carotenoid coloration. We review evidence that traits can be condition dependent without the influence of sexual selection and that novel traits can show condition‐dependent expression as soon as they appear in a population, without the possibility of sexual selection. We conclude by highlighting new opportunities for studying condition‐dependent signalling made possible by genetic manipulation and expression of ornamental traits in synthetic biological systems.more » « less
-
Abstract In birds, the process of speciation is closely associated with transitions in ornamentation, including coloration, plumage pattern, and song. To investigate the origins of these shifts and their connection to genetic changes, we conducted a study on one of the most highly ornamented songbirds, the Painted Bunting (Passerina ciris). The male Painted Buntings exhibits a stunning array of colors, with a red chest, blue head, green back, green coverts, and pink rump. In addition, Painted Buntings show a high level of genetic structure, with eastern and western populations that have fixed genetic differences in both nuclear and mitochondrial genes. Using non-invasive spectrophotometry techniques, we measured the coloration of six plumage patches on 88 museum specimens of male Painted Buntings in definitive plumage from across the range of the species. We predicted that there would be divergence between the genetically distinct eastern and western populations in ornamental coloration that is perceptible to a bunting but imperceptible to a human observer. However, we measured no consistent nor substantial difference in the plumage coloration of males from different populations. The observation of substantial divergence in nuclear and mitochondrial genotype with no change in ornamental coloration between populations of a brightly colored bird has important implications for the role of sexual selection in the process of speciation.more » « less
An official website of the United States government
