Abstract We consider the Born and inverse Born series for scalar waves with a cubic nonlinearity of Kerr type. We find a recursive formula for the operators in the Born series and prove their boundedness. This result gives conditions which guarantee convergence of the Born series, and subsequently yields conditions which guarantee convergence of the inverse Born series. We also use fixed point theory to give alternate explicit conditions for convergence of the Born series. We illustrate our results with numerical experiments.
more »
« less
This content will become publicly available on November 26, 2025
Nonlinearity helps the convergence of the inverse Born series
Abstract In previous work of the authors, we investigated the Born and inverse Born series for a scalar wave equation with linear and nonlinear terms, the nonlinearity being cubic of Kerr type (DeFilippiset al2023Inverse Problems39125015). We reported conditions which guarantee convergence of the inverse Born series, enabling recovery of the coefficients of the linear and nonlinear terms. In this work, we show that if the coefficient of the linear term is known, an arbitrarily strong Kerr nonlinearity can be reconstructed, for sufficiently small data. Additionally, we show that similar convergence results hold for general polynomial nonlinearities. Our results are illustrated with numerical examples.
more »
« less
- PAR ID:
- 10617614
- Publisher / Repository:
- Inverse Problems
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 40
- Issue:
- 12
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 125020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we construct the Born and inverse Born approximation and series to recover two function-valued coefficients in the Helmholtz equation for inverse scattering problems from the scattering data at two different wave-numbers. An analysis of the convergence and approximation error of the proposed regularized inverse Born series is provided. The results show that the proposed series converges when the inverse Born approximations of the perturbations are sufficiently small. The preliminary numerical results show the capability of the proposed regularized inverse Born approximation and series for recovering the isotropic inhomogeneous media.more » « less
-
We investigate the inverse scattering problem for scalar waves. We report conditions under which the terms in the inverse Born series cancel in pairs, leaving only one term at each order. We refer to the resulting expansion as the reduced inverse Born series. The reduced series can also be derived from a nonperturbative inversion formula. Our results are illustrated by numerical simulations that compare the performance of the reduced series to the full inverse Born series and the Newton–Kantorovich method.more » « less
-
N/A (Ed.)Abstract This work unifies the analysis of various randomized methods for solving linear and nonlinear inverse problems with Gaussian priors by framing the problem in a stochastic optimization setting. By doing so, we show that many randomized methods are variants of a sample average approximation (SAA). More importantly, we are able to prove a single theoretical result that guarantees the asymptotic convergence for a variety of randomized methods. Additionally, viewing randomized methods as an SAA enables us to prove, for the first time, a single non-asymptotic error result that holds for randomized methods under consideration. Another important consequence of our unified framework is that it allows us to discover new randomization methods. We present various numerical results for linear, nonlinear, algebraic, and PDE-constrained inverse problems that verify the theoretical convergence results and provide a discussion on the apparently different convergence rates and the behavior for various randomized methods.more » « less
-
Abstract We prove that the small-data scattering map uniquely determines the nonlinearity for a wide class of gauge-invariant, intercritical nonlinear Schrödinger equations. We use the Born approximation to reduce the analysis to a deconvolution problem involving the distribution function for linear Schrödinger solutions. We then solve this deconvolution problem using the Beurling–Lax Theorem.more » « less
An official website of the United States government
