skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 9, 2026

Title: A Quick Overview of Robot Cooking
Robotic cooking can alter both home and commercial kitchens by automat-ing and improving a variety of cooking operations. The incorporation of modern technology, such as robot manipulation, computer vision, deep learning, modal sensors, and other machine learning techniques, allows these robots to perform difficult culinary operations with accuracy and consisten-cy. However, several challenges still exist in adapting robotic systems to the diverse tools and techniques used in cooking. Robots need to use a wide ar-ray of kitchen tools designed for humans, such as knives, spatulas, and whisks. This requires not only the ability to grasp and manipulate these tools but also the adaptability to switch between them efficiently and use them correctly in different cooking contexts. This paper reviews the latest devel-opments in robotic cooking platforms, examining their design, performance, and public perception. It also covers various technologies critical for building robotic chefs, categorizing these advancements into need and importance, emerging technologies, different techniques, and future challenges. Further-more, it addresses the technical and practical obstacles that currently hinder their widespread implementation.  more » « less
Award ID(s):
2150484
PAR ID:
10617734
Author(s) / Creator(s):
; ; ;
Editor(s):
Ronchieri, Elisabetta; Carbone, John; Then, Patrick; Juric, Rewdmila
Publisher / Repository:
Springer International Publishing AG
Date Published:
ISSN:
1090-9389
ISBN:
9783031965173
Subject(s) / Keyword(s):
Chef Robot, Robotic Cooking, HRI
Format(s):
Medium: X
Location:
USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The United States Department of Defense (DoD) designs, constructs, and deploys social and autonomous robots and robotic weapons systems. Military robots are designed to follow the rules and conduct of the professions or roles they emulate, and it is expected that ethical principles are applied and aligned with such roles. The application of these principles appear paramount during the COVID-19 global pandemic, wherein substitute technologies are crucial in carrying out duties as humans are more restrained due to safety restrictions. This article seeks to examine the ethical implications of the utilization of military robots. The research assesses ethical challenges faced by the United States DoD regarding the use of social and autonomous robots in the military. The authors provide a summary of the current status of these lethal autonomous and social military robots, ethical and moral issues related to their design and deployment, a discussion of policies, and the call for an international discourse on appropriate governance of such systems. 
    more » « less
  2. Social-educational robotics, such as NAO humanoid robots with social, anthropomorphic, humanlike features, are tools for learning, education, and addressing developmental disorders (e.g., autism spectrum disorder or ASD) through social and collaborative robotic interactions and interventions. There are significant gaps at the intersection of social robotics and autism research dealing with how robotic technology helps ASD individuals with their social, emotional, and communication needs, and supports teachers who engage with ASD students. This research aims to (a) obtain new scientific knowledge on social-educational robotics by exploring the usage of social robots (especially humanoids) and robotic interventions with ASD students at high schools through an ASD student–teacher co-working with social robot–social robotic interactions triad framework; (b) utilize Business Model Canvas (BMC) methodology for robot design and curriculum development targeted at ASD students; and (c) connect interdisciplinary areas of consumer behavior research, social robotics, and human-robot interaction using customer discovery interviews for bridging the gap between academic research on social robotics on the one hand, and industry development and customers on the other. The customer discovery process in this research results in eight core research propositions delineating the contexts that enable a higher quality learning environment corresponding with ASD students’ learning requirements through the use of social robots and preparing them for future learning and workforce environments. 
    more » « less
  3. Ahram, Tareq; Karwowski, Waldemar (Ed.)
    AI, robotics, and automation are reshaping many industries, including the Architecture, Engineering, and Construction (AEC) industries. For students aiming to enter these evolving fields, comprehensive and accessible training in high-tech roles is becoming increasingly important. Traditional robotics education, while often effective, usually necessitates small class sizes and specialized equipment. On-the-job training introduces safety risks, particularly for inexperienced individuals. The integration of advanced technologies for training presents an alternative that reduces the need for extensive physical resources and minimizes safety concerns. This paper introduces the Intelligent Learning Platform for Robotics Operations (IL-PRO), an innovative project that integrates the use of Artificial Intelligence (AI), Virtual Reality (VR), and game-assisted learning for teaching robotic arms operations. The goal of this project is to address the limitations of traditional training through the implementation of personalized learning strategies supported by Adaptive Learning Systems (ALS). These systems hold the potential to transform education by customizing content to cater to various levels of understanding, preferred learning styles, past experiences, and diverse linguistic and socio-cultural backgrounds.Central to IL-PRO is the development of its ALS, which uses student progress variables and multimodal machine learning to infer students’ level of understanding and automate task and feedback delivery. The curriculum is organized into modules, starting with fundamental robotic concepts, and advancing to complex motion planning and programming. The curriculum is guided by a learner model that is continuously refined through data collection. Furthermore, the project incorporates gaming elements into its VR learning approach to create an engaging educational environment. Thus, the learning content is designed to engage students with simulated robots and input devices to solve sequences of game-based challenges. The challenge sequences are designed similarly to levels in a game, each with increasing complexity, in order to systematically incrementally build students' knowledge, skills, and confidence in robotic operations. The project is conducted by a team of interdisciplinary faculty from Florida International University (FIU), the University of California Irvine (UCI), the University of Hawaii (UH) and the University of Kansas-Missouri (UKM). The collaboration between these institutions enables the sharing of resources and expertise that are essential for the development of this comprehensive learning platform. 
    more » « less
  4. Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices. 
    more » « less
  5. Fluidically actuated soft robotic devices have attracted increasing interest due to their ability to provide benefits over traditional rigid systems in biomedical applications such as minimally invasive surgery, rehabilitative devices, and prosthetics. Unfortunately, challenges remain for controlling the fluidic operations of such systems, driving a critical need for new classes of fluidic circuit elements. Here we explore the use of “Liquid Crystal Display (LCD)” 3D printing—a low-cost vat photopolymerization (VPP) approach—to additively manufacture “normally closed” fluidic transistors with operations analogous to their electronic counterparts. Specifically, we leverage an “additive assembly” strategy wherein part components are printed separately and assembled post hoc. Experimental results for higher source pressure magnitudes revealed that in the absence of an applied gate pressure, the element obstructed source-to-drain fluid flow—i.e., normally closed behavior—however, by applying a gate pressure of ≥25 kPa, the element permitted source-to-drain fluid flow. Thus, this work establishes the efficacy for VPP-based additive assembly of fluidic circuit elements, which could help to advance and democratize fluidic circuit-based soft robotic technologies. 
    more » « less