America the Beautiful: Meeting “30 × 30” Conservation Goals Through Connected Protected Areas
- Award ID(s):
- 2416164
- PAR ID:
- 10617789
- Publisher / Repository:
- American Association of Geographers
- Date Published:
- Journal Name:
- Annals of the American Association of Geographers
- ISSN:
- 2469-4452
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We describe photometric monitoring of the Seyfert 1 galaxy MCG–06-30-15 with the Las Cumbres Observatory network. Using theVfilter, 496 images were collected between 2023 December and 2024 June from observatories in Chile, South Africa, and Australia. We created light curves of the active galactic nucleus continuum emission using aperture photometry and image subtraction methods. We find that the typical magnitude difference between the two light curves is ΔV ≈ 1.9 mag, indicating that the host galaxy contributes approximately 85% of the total flux through the photometric aperture. The amplitude of variation is significantly enhanced when the host galaxy is removed: ΔV = 0.1 mag from aperture photometry compared to ΔV = 0.5 mag with image subtraction. Future work will compare the continuum light curve with the broad emission-line flux variations to provide insight into the physical parameters of the broad-line region in MCG–06-30-15 and the mass of the central supermassive black hole.more » « less
-
null (Ed.)Abstract The Mw 7.1 47 km deep earthquake that occurred on 30 November 2018 had deep societal impacts across southcentral Alaska and exhibited phenomena of broad scientific interest. We document observations that point to future directions of research and hazard mitigation. The rupture mechanism, aftershocks, and deformation of the mainshock are consistent with extension inside the Pacific plate near the down‐dip limit of flat‐slab subduction. Peak ground motions >25%g were observed across more than 8000 km2, though the most violent near‐fault shaking was avoided because the hypocenter was nearly 50 km below the surface. The ground motions show substantial variation, highlighting the influence of regional geology and near‐surface soil conditions. Aftershock activity was vigorous with roughly 300 felt events in the first six months, including two dozen aftershocks exceeding M 4.5. Broad subsidence of up to 5 cm across the region is consistent with the rupture mechanism. The passage of seismic waves and possibly the coseismic subsidence mobilized ground waters, resulting in temporary increases in stream flow. Although there were many failures of natural slopes and soils, the shaking was insufficient to reactivate many of the failures observed during the 1964 M 9.2 earthquake. This is explained by the much shorter duration of shaking as well as the lower amplitude long‐period motions in 2018. The majority of observed soil failures were in anthropogenically placed fill soils. Structural damage is attributed to both the failure of these emplaced soils as well as to the ground motion, which shows some spatial correlation to damage. However, the paucity of instrumental ground‐motion recordings outside of downtown Anchorage makes these comparisons challenging. The earthquake demonstrated the challenge of issuing tsunami warnings in complex coastal geographies and highlights the need for a targeted tsunami hazard evaluation of the region. The event also demonstrates the challenge of estimating the probabilistic hazard posed by intraslab earthquakes.more » « less
-
ABSTRACT Gravitational time delays provide a powerful one-step measurement of H0, independent of all other probes. One key ingredient in time-delay cosmography are high-accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (105–106 CPU hours and ∼0.5–1 yr, respectively). Major improvements in modelling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, we develop an automated modelling pipeline and apply it to a sample of 31 lens systems, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in the Fermat potential (proportional to time delay) with respect to modelling choices. We find that for 10/30 lenses, our models are cosmography or nearly cosmography grade (<3 per cent and 3–5 per cent variations). For 6/30 lenses, the models are close to cosmography grade (5–10 per cent). These results utilize informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modelling sequence and options. In conclusion, we show that uniform cosmography grade modelling of large strong lens samples is within reach.more » « less
An official website of the United States government

