skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supramolecular Matter Through Crystal Engineering: Covalent Bond Formation to Postsynthetic Modification
Abstract Supramolecular chemistry can transform organic synthesis by revealing that crystalline materials are not static but rather dynamic environments for controlled covalent bond formations and manipulations. This review focuses on how supramolecular chemistry can be developed to direct molecular synthesis in the organic solid state, directing reliable C─C bond formations to enable transformations difficult or impossible in solution. Special attention is given to postsynthetic modifications that serve to broaden the functional scope of solid‐state reactivity allowing organic crystals to be developed as molecular flasks and a form of supramolecular matter.  more » « less
Award ID(s):
2221086
PAR ID:
10617991
Author(s) / Creator(s):
;
Publisher / Repository:
European Chemical Societies Publishing
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
31
Issue:
27
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  2. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  3. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  4. Abstract The crystal structure of a commercially available anthracene derivative, anthracene‐9‐thiocarboxamide, is reported here for the first time. The compound undergoes a [4+4] cycloaddition in the solid state to afford facile synthesis of the cycloadduct (CA). The cycloaddition is also reversible in the solid state using heat or mechanical force. Due to the presence of unpaired, strong hydrogen‐bond donor atoms on the CA, significant solvatomorphism is achieved, and components of the solvatomorphs self‐assemble into four different classes of supramolecular structures. The CA readily crystallizes with a variety of structurally‐diverse solvents including those containing oxygen‐, nitrogen‐, or pi‐acceptors. Some of the solvents the CA crystallized with include thiophene, benzene, and the three xylene isomers; thus, the CA was employed in industrially‐relevant solvent separation. However, in competition studies, the CA did not exhibit selectivity. Lastly, it is demonstrated that the CA crystallizes with vinyl‐containing monomers and is currently the only compound that crystallizes with both widely used monomers 4‐vinylpyridine and styrene. Solid‐state complexation of the CA with the monomers affords over a 50 °C increase in the monomer's thermal stabilities. The strategy of designing molecules with unused donors can be applied to achieve separations or volatile liquid stabilization. 
    more » « less
  5. A three-dimensional hydrogen-bonded network based on a rare mok topology has been constructed using an organic molecule synthesized in the solid state. The molecule is obtained using a supramolecular protecting-group strategy that is applied to a solid-state [2+2] photodimerization. The photodimerization affords a novel head-to-head cyclobutane product. The cyclobutane possesses tetrahedrally disposed cis -hydrogen-bond donor (phenolic) and cis -hydrogen-bond acceptor (pyridyl) groups. The product self-assembles in the solid state to form a mok network that exhibits twofold interpenetration. The cyclobutane adopts different conformations to provide combinations of hydrogen-bond donor and acceptor sites to conform to the structural requirements of the mok net. 
    more » « less