Abstract Sources of neurotoxic mercury in forests are dominated by atmospheric gaseous elemental mercury (GEM) deposition, but a dearth of direct GEM exchange measurements causes major uncertainties about processes that determine GEM sinks. Here we present three years of forest-level GEM deposition measurements in a coniferous forest and a deciduous forest in northeastern USA, along with flux partitioning into canopy and forest floor contributions. Annual GEM deposition is 13.4 ± 0.80 μg m−2(coniferous forest) and 25.1 ± 2.4 μg m−2(deciduous forest) dominating mercury inputs (62 and 76% of total deposition). GEM uptake dominates in daytime during active vegetation periods and correlates with CO2assimilation, attributable to plant stomatal uptake of mercury. Non-stomatal GEM deposition occurs in the coniferous canopy during nights and to the forest floor in the deciduous forest and accounts for 24 and 39% of GEM deposition, respectively. Our study shows that GEM deposition includes various pathways and is highly ecosystem-specific, which complicates global constraints of terrestrial GEM sinks.
more »
« less
This content will become publicly available on May 1, 2026
Incomplete Fusion Defects and Deformation Behavior in GMA-DED of 316L and 316LSi
The influence of hatch spacing on tensile properties of high deposition rate gas metal arc-directed energy deposition of 316L and 316LSi was explored
more »
« less
- Award ID(s):
- 2052819
- PAR ID:
- 10618401
- Publisher / Repository:
- American Welding Society
- Date Published:
- Journal Name:
- Welding Journal
- Volume:
- 104
- Issue:
- 7
- ISSN:
- 0043-2296
- Page Range / eLocation ID:
- 217-s to 230-s
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nitrogen (N) wet deposition chemistry impacts watershed biogeochemical cycling. The timescale and magnitude of (a)synchrony between wet deposition N inputs and watershed N outputs remains unresolved. We quantify deposition‐river N (a)synchrony with transfer entropy (TE), an information theory metric enabling quantification of lag‐dependent feedbacks in a hydrologic system by calculating directional information flow between variables. Synchrony is defined as a significant amount of TE‐calculated reduction in uncertainty of river N from wet deposition N after conditioning for antecedent river N conditions. Using long‐term timeseries of wet deposition and river DON, NO3−, and NH4+concentrations from the Lamprey River watershed, New Hampshire (USA), we constrain the role of wet deposition N to watershed biogeochemistry. Wet deposition N contributed information to river N at timescales greater than quick‐flow runoff generation, indicating that river N losses are a lagged non‐linear function of hydro‐biogeochemical forcings. River DON received the most information from all three wet deposition N solutes while wet deposition DON and NH4+contributed the most information to all three river N solutes. Information theoretic algorithms facilitated data‐driven inferences on the hydro‐biogeochemical processes influencing the fate of N wet deposition. For example, signals of mineralization and assimilation at a timescale of 12 to 21‐weeks lag display greater synchrony than nitrification, and we find that N assimilation is a positive lagged function of increasing N wet deposition. Although wet deposition N is not the main driver of river N, it contributes a significant amount of information resolvable at time scales of transport and transformations.more » « less
-
Abstract Ombrotrophic bogs receive new inputs of elements solely through atmospheric deposition, except for N where inputs are predominantly through N 2 -fixation, at least in low N deposition environments. At various locations across the globe, including the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada, element atmospheric deposition has increased as a result of anthropogenic activities. Regional and/or global deposition gradients offer an opportunity to examine questions related to nutrient limitation and element stoichiometry, i.e., the maintenance of relatively constant element ratios in bog lichen/plant tissues despite differing element deposition/availability. Using a dataset of tissue element concentrations in eight lichen/plant species in six AOSR bogs, supplemented with literature data from other sites globally, this synthesis asks: is there evidence of element stoichiometric homeostasis in lichen or plant species in AOSR bogs; if so, do stoichiometric homeostasis relationships extend globally beyond the AOSR, and; do element ratios provide insight into element limitation for the eight species? Mean element ratios and their coefficients of variation, ternary NPK and CaMgK plots, and scaling coefficients revealed widespread evidence of stoichiometric homeostasis. Stoichiometric relationships generally were unaffected by differences in element deposition among the AOSR bogs. Stoichiometric relationships sometimes extended to a species globally, but sometimes did not. Element ratios and ternary diagrams suggested a combination of N-, P-, and K-limitation, both within and beyond the AOSR bogs. Regionally high atmospheric N deposition may have shifted some species from N-limitation prior to the Industrial Revolution to P- or K-limitation today.more » « less
-
This study investigates the transport and deposition of small particles (500 nm≤dp≤10 μm) in a fully developed turbulent channel flow, focusing on two fluid friction Reynolds numbers: Reτ=180 and Reτ=1000. Using the point particle–direct numerical simulation method under the assumption of one-way coupling, we study how fluid flow (carrier phase) characteristics influence particle deposition. Our findings suggest that changes in flow conditions can significantly alter the deposition behavior of particles with the same size and properties. Furthermore, we show for the first time that gravity has minimal impact on deposition dynamics only at high Reynolds numbers. This research enhances our understanding of small particle deposition and transport in turbulent flows at high Reynolds numbers, which is crucial for various industrial applications.more » « less
-
Glassy films of methyl-m-toluate have been vapor deposited onto a substrate equipped with interdigitated electrodes, facilitating in situ dielectric relaxation measurements during and after deposition. Samples of 200 nm thickness have been deposited at rates of 0.1 nm/s at a variety of deposition temperatures between 40 K and Tg = 170 K. With increasing depth below the surface, the dielectric loss changes gradually from a value reflecting a mobile surface layer to that of the kinetically stable glass. The thickness of this more mobile layer varies from below 1 to beyond 10 nm as the deposition temperature is increased, and its average fictive temperature is near Tg for all deposition temperatures. Judged by the dielectric loss, the liquid-like portion of the surface layer exceeds a thickness of 1 nm only for deposition temperatures above 0.8Tg, where near-equilibrium glassy states are obtained. After deposition, the dielectric loss of the material positioned about 5–30 nm below the surface decreases for thousands of seconds of annealing time, whereas the bulk of the film remains unchanged.more » « less
An official website of the United States government
