Abstract Regional patterns of sea level rise are affected by a range of factors including glacial melting, which has occurred in recent decades and is projected to increase in the future, perhaps dramatically. Previous modeling studies have typically included fluxes from melting glacial ice only as a surface forcing of the ocean or as an offline addition to the sea surface height fields produced by climate models. However, observational estimates suggest that the majority of the meltwater from the Antarctic Ice Sheet actually enters the ocean at depth through ice shelf basal melt. Here we use simulations with an ocean general circulation model in an idealized configuration. The results show that the simulated global sea level change pattern is sensitive to the depth at which Antarctic meltwater enters the ocean. Further analysis suggests that the response is dictated primarily by the steric response to the depth of the meltwater flux.
more »
« less
A Theory for How the Depth of Meltwater Injection Impacts Regional Sea Level Evolution
Abstract Mass loss from the Antarctic ice sheet is projected to continue over the coming century. The resultant sea level change will have a regional pattern that evolves over time as the ocean adjusts. Accurate estimation of this evolution is crucial for local communities. Current state-of-the-art climate models typically do not couple ice sheets to the atmosphere–ocean system, and the impact of ice sheet melt has often been studied by injecting meltwater at the model ocean surface. However, observational evidence suggests that most Antarctic meltwater enters the ocean at depth through ice shelf basal melt. A previous study has demonstrated that the regional sea level pattern at a given time depends on meltwater injection depth. Here, we introduce a 2.5-layer model to investigate this dependence and develop a theory for the associated adjustment mechanisms. We find mechanisms consistent with previous literature on the ocean adjustment to changes in forcing, whereby a slower Rossby wave response off the eastern boundary follows a fast response from the western boundary current and Kelvin waves. We demonstrate that faster baroclinic Rossby waves near the surface than at depth explain the injection depth dependence of the adjustment in the 2.5-layer model. The identified Rossby wave mechanism may contribute to the dependence of the ocean’s transient adjustment on meltwater injection depth in more complex models. This work highlights processes that could cause errors in the projection of the time-varying pattern of sea level rise using surface meltwater input to represent Antarctica’s freshwater forcing. Significance StatementSea level rise is expected to be larger in some locations than in others. Accurate projections of the pattern of sea level change, which changes in time as the ocean adjusts, are essential information for local communities. One of the factors that leads to uncertainty in the local sea level change due to Antarctic melt is the depth at which this meltwater is input into an ocean model. We propose a mechanism for a faster response of sea level around the basin when meltwater is injected at the ocean surface compared to when it is injected well below the surface. This mechanism has implications for projections of the regional sea level response to Antarctic melt.
more »
« less
- Award ID(s):
- 2048576
- PAR ID:
- 10618937
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 55
- Issue:
- 8
- ISSN:
- 0022-3670
- Format(s):
- Medium: X Size: p. 1139-1154
- Size(s):
- p. 1139-1154
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use two coupled climate models, GFDL‐CM4 and GFDL‐ESM4, to investigate the physical response of the Southern Ocean to changes in surface wind stress, Antarctic meltwater, and the combined forcing of the two in a pre‐industrial control simulation. The meltwater cools the ocean surface in all regions except the Weddell Sea, where the wind stress warms the near‐surface layer. The limited sensitivity of the Weddell Sea surface layer to the meltwater is due to the spatial distribution of the meltwater fluxes, regional bathymetry, and large‐scale circulation patterns. The meltwater forcing dominates the Antarctic shelf response and the models yield strikingly different responses along West Antarctica. The disagreement is attributable to the mean‐state representation and meltwater‐driven acceleration of the Antarctic Slope Current (ASC). In CM4, the meltwater is efficiently trapped on the shelf by a well resolved, strong, and accelerating ASC which isolates the West Antarctic shelf from warm offshore waters, leading to strong subsurface cooling. In ESM4, a weaker and diffuse ASC allows more meltwater to escape to the open ocean, the West Antarctic shelf does not become isolated, and instead strong subsurface warming occurs. The CM4 results suggest a possible negative feedback mechanism that acts to limit future melting, while the ESM4 results suggest a possible positive feedback mechanism that acts to accelerate melt. Our results demonstrate the strong influence the ASC has on governing changes along the shelf, highlighting the importance of coupling interactive ice sheet models to ocean models that can resolve these dynamical processes.more » « less
-
Abstract. Antarctic ice shelves are vulnerable to warming ocean temperatures, and some have already begun thinning in response to increased basal melt rates.Sea level is therefore expected to rise due to Antarctic contributions, but uncertainties in its amount and timing remain largely unquantified. In particular, there is substantial uncertainty in future basal melt rates arising from multi-model differences in thermal forcing and how melt rates depend on that thermal forcing. To facilitate uncertainty quantification in sea level rise projections, we build, validate, and demonstrate projections from a computationally efficient statistical emulator of a high-resolution (4 km) Antarctic ice sheet model, the Community Ice Sheet Model version 2.1. The emulator is trained to a large (500-member) ensemble of 200-year-long 4 km resolution transient ice sheet simulations, whereby regional basal melt rates are perturbed by idealized (yet physically informed) trajectories. The main advantage of our emulation approach is that by sampling a wide range of possible basal melt trajectories, the emulator can be used to (1) produce probabilistic sea level rise projections over much larger Monte Carlo ensembles than are possible by direct numerical simulation alone, thereby providing better statistical characterization of uncertainties, and (2) predict the simulated ice sheet response under differing assumptions about basal melt characteristics as new oceanographic studies are published, without having to run additional numerical ice sheet simulations. As a proof of concept, we propagate uncertainties about future basal melt rate trajectories, derived from regional ocean models, to generate probabilistic sea level rise estimates for 100 and 200 years into the future.more » « less
-
Abstract The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise.more » « less
-
Ice shelf basal melting is the primary mechanism driving mass loss from the Antarctic Ice Sheet, yet it is unknown how the localized melt enhancement from subglacial discharge will affect future Antarctic glacial retreat. We develop a parameterization of ice shelf basal melt that accounts for both ocean and subglacial discharge forcing and apply it in future projections of Denman and Scott Glaciers, East Antarctica, through 2300. In forward simulations, subglacial discharge accelerates the onset of retreat of these systems into the deepest continental trench on Earth by 25 years. During this retreat, Denman Glacier alone contributes 0.33 millimeters per year to global sea level rise, comparable to half of the contemporary sea level contribution of the entire Antarctic Ice Sheet. Our results stress the importance of resolving complex interactions between the ice, ocean, and subglacial environments in future Antarctic Ice Sheet projections.more » « less
An official website of the United States government
