skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 29, 2026

Title: Phage defense and genome editing using novel retrons sourced from isolated environmental bacteria
ABSTRACT Retrons are bacterial immune systems that protect a bacterial population against phages by killing infected hosts. Retrons typically comprise a reverse transcriptase, a template noncoding RNA that is partially reverse transcribed into RT-DNA, and a toxic effector. The reverse transcriptase, noncoding RNA, and RT-DNA complex sequester the toxic effector until triggered by phage infection, at which point the toxin is released to induce cell death. Due to their ability to produce single-stranded DNA in vivo, retrons have also been engineered to produce donor templates for genome editing in both prokaryotes and eukaryotes. However, the current repertoire of experimentally characterized retrons is limited, with most retrons sourced from clinical and laboratory strains of bacteria. To better understand retron biology and natural diversity, and to expand the current toolbox of retron-based genome editors, we developed a pipeline to isolate retrons and their bacterial hosts from a variety of environmental samples. Here, we present six of these novel retrons, each isolated from a different host bacterium. We characterize the full operon of these retrons and test their ability to defend against a panel ofE. coliphages. For two of these retrons, we further unravel their mechanism of defense by identifying the phage genes responsible for triggering abortive infection. Finally, we engineer these retrons for genome editing inE. coli, demonstrating their potential use in a biotechnological application.  more » « less
Award ID(s):
2137692
PAR ID:
10620634
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The bacterial retron reverse transcriptase system has served as an intracellular factory for single-stranded DNA in many biotechnological applications. In these technologies, a natural retron non-coding RNA (ncRNA) is modified to encode a template for the production of custom DNA sequences by reverse transcription. The efficiency of reverse transcription is a major limiting step for retron technologies, but we lack systematic knowledge of how to improve or maintain reverse transcription efficiency while changing the retron sequence for custom DNA production. Here, we test thousands of different modifications to the Retron-Eco1 ncRNA and measure DNA production in pooled variant library experiments, identifying regions of the ncRNA that are tolerant and intolerant to modification. We apply this new information to a specific application: the use of the retron to produce a precise genome editing donor in combination with a CRISPR-Cas9 RNA-guided nuclease (an editron). We use high-throughput libraries in Saccharomyces cerevisiae to additionally define design rules for editrons. We extend our new knowledge of retron DNA production and editron design rules to human genome editing to achieve the highest efficiency Retron-Eco1 editrons to date. 
    more » « less
  2. ABSTRACT Advanced genome editing technologies have enabled rapid and flexible rewriting of theEscherichia coligenome, benefiting fundamental biology and biomanufacturing. Unfortunately, some of the most useful technologies to advance genome editing inE. colihave not yet been ported into other bacterial species. For instance, the addition of bacterial retrons to the genome editing toolbox has increased the efficiency of recombineering inE. coliby enabling sustained, abundant production of ssDNA recombineering donors by reverse transcription that install flexible, precise edits in the prokaryotic chromosome. To extend the utility of this technology beyondE. coli, we surveyed the portability and versatility of retron-mediated recombineering across three different bacterial phyla (Proteobacteria, BacillotaandActinomycetota) and a total of 15 different species. We found that retron recombineering is functional in all species tested, reaching editing efficiencies above 20% in six of them, above 40% in three of them, and above 90% in two of them. We also tested the extension of the recombitron architecture optimizations and strain backgrounds in a subset of hosts to additionally increase editing rates. The broad recombitron survey carried out in this study forms the basis for widespread use of retron-derived technologies through the whole Bacteria domain. 
    more » « less
  3. Abstract Retrons are bacterial retroelements that produce single-stranded, reverse-transcribed DNA (RT-DNA) that is a critical part of a newly discovered phage defense system. Short retron RT-DNAs are produced from larger, structured RNAs via a unique 2′-5′ initiation and a mechanism for precise termination that is not yet understood. Interestingly, retron reverse transcriptases (RTs) typically lack an RNase H domain and, therefore, depend on endogenous RNase H1 to remove RNA templates from RT-DNA. We find evidence for an expanded role of RNase H1 in the mechanism of RT-DNA termination, beyond the mere removal of RNA from RT-DNA:RNA hybrids. We show that endogenous RNase H1 determines the termination point of the retron RT-DNA, with differing effects across retron subtypes, and that these effects can be recapitulated using a reduced, in vitro system. We exclude mechanisms of termination that rely on steric effects of RNase H1 or RNA secondary structure and, instead, propose a model in which the tertiary structure of the single-stranded RT-DNA and remaining RNA template results in termination. Finally, we show that this mechanism affects cellular function, as retron-based phage defense is weaker in the absence of RNase H1. 
    more » « less
  4. ABSTRACT Multidrug-resistant (MDR) bacteria pose a significant public health challenge, underscoring the urgent need for innovative antibacterial strategies. Bacteriophages (phages), viruses that specifically target bacteria, offer a promising alternative; however, bacterial immune defenses often limit their effectiveness. Developing small-molecule inhibitors of these defenses can facilitate mechanistic studies and serve as adjuvants to enhance phage therapy. Here, we identify novel inhibitors targeting the bacterial cyclic oligonucleotide-based anti-phage signaling system (CBASS) effector Cap5. Cap5 is an HNH endonuclease activated by a cyclic nucleotide to degrade genomic DNA in virally infected cells, leading to cell death through abortive infection. Guided by the crystal structure of the Cap5 SAVED domain bound to its activating ligand, we performed structure-guided virtual screening to identify candidate inhibitors. Biochemical assays revealed that approximately 16% of the top docking hits exhibited inhibitory activity. Further cellular assays demonstrated that one potent compound could enterE. colicells and inhibit Cap5 activity. Our integrated approach—combining structure-based virtual screening with biochemical validation—provides a robust framework for discovering small-molecule inhibitors of bacterial immune defenses to advance adjunctive therapies and deepen our understanding of phage-bacteria interactions. 
    more » « less
  5. Barr, Jeremy J. (Ed.)
    Numerous ecological interactions among microbes—for example, competition for space and resources, or interaction among phages and their bacterial hosts—are likely to occur simultaneously in multispecies biofilm communities. While biofilms formed by just a single species occur, multispecies biofilms are thought to be more typical of microbial communities in the natural environment. Previous work has shown that multispecies biofilms can increase, decrease, or have no measurable impact on phage exposure of a host bacterium living alongside another species that the phages cannot target. The reasons underlying this variability are not well understood, and how phage–host encounters change within multispecies biofilms remains mostly unexplored at the cellular spatial scale. Here, we study how the cellular scale architecture of model 2-species biofilms impacts cell–cell and cell–phage interactions controlling larger scale population and community dynamics. Our system consists of dual culture biofilms ofEscherichia coliandVibrio choleraeunder exposure to T7 phages, which we study using microfluidic culture, high-resolution confocal microscopy imaging, and detailed image analysis. As shown previously, sufficiently mature biofilms ofE.colican protect themselves from phage exposure via their curli matrix. Before this stage of biofilm structural maturity,E.coliis highly susceptible to phages; however, we show that these bacteria can gain lasting protection against phage exposure if they have become embedded in the bottom layers of highly packed groups ofV.choleraein co-culture. This protection, in turn, is dependent on the cell packing architecture controlled byV.choleraebiofilm matrix secretion. In this manner,E.colicells that are otherwise susceptible to phage-mediated killing can survive phage exposure in the absence of de novo resistance evolution. While co-culture biofilm formation withV.choleraecan confer phage protection toE.coli, it comes at the cost of competing withV.choleraeand a disruption of normal curli-mediated protection forE.colieven in dual species biofilms grown over long time scales. This work highlights the critical importance of studying multispecies biofilm architecture and its influence on the community dynamics of bacteria and phages. 
    more » « less