skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Scalable mechanical exfoliation of two-dimensional nanosheets by polymer-assisted dry ball-mill of layered materials and insights from machine learning
To fully capitalize on the unique properties of 2D materials, cost-effective techniques for producing high-quality 2D flakes at scale are crucial. In this work, we show that dry ball-milling, a commonly used powder-processing technique, can be effectively and efficiently upgraded into an automated exfoliation technique. It is done by adding polymer as adhesives into a ball mill to mimic the well-known tape exfoliation process, which is known to produce 2D flakes with the highest quality but is limited by its extremely low efficiency on large-scale production. Seventeen types of commonly seen polymers, including both artificial and natural ones, have been examined as additives to dry ball-mill hexagonal boron nitride. A parallel comparison between different additives identifies low-cost natural polymers such as starch as promising dry ball-mill additives to produce ultrathin flakes with the largest aspect ratio. The mechanical, thermal, and surface properties of the polymers are proposed as key features that simultaneously determine the exfoliation efficiency, and their ranking of importance in the mechanical exfoliation process is revealed using a machine learning model. Finally, the potential of the polymer-assisted ball-mill exfoliation method as a universal way to produce ultra-thin 2D nanosheets is also demonstrated.  more » « less
Award ID(s):
2113864 2113882
PAR ID:
10620755
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials Today Nano
Volume:
30
Issue:
C
ISSN:
2588-8420
Page Range / eLocation ID:
100604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed. 
    more » « less
  2. Abstract The design and formation of van der Waals (vdW) heterostructures with different two-dimensional (2D) materials provide an opportunity to create materials with extraordinary physical properties tailored toward specific applications. Mechanical exfoliation of natural vdW materials has been recognized as an effective way for producing high-quality ultrathin vdW heterostructures. Abramovite is one of such naturally occurring vdW materials, where the superlattice is composed of alternating Pb 2 BiS 3 and SnInS 4 2D material lattices. The forced commensuration between the two incommensurate constituent 2D material lattices induces in-plane structural anisotropy in the formed vdW heterostructure of abramovite, even though the individual 2D material lattices are isotropic in nature. Here, we show that ultrathin layers of vdW heterostructures of abramovite can be achieved by mechanical exfoliation of the natural mineral. Furthermore, the structural anisotropy induced highly anisotropic vibrational and optical responses of abramovite thin flakes are demonstrated by angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent third-harmonic generation. Our results not only establish abramovite as a promising natural vdW material with tailored linear and nonlinear optical properties for building future anisotropic integrated photonic devices, but also provide a deeper understanding of the origin of structural, vibrational and optical anisotropy in vdW heterostructures. 
    more » « less
  3. Abstract Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility. 
    more » « less
  4. Although flakes of two-dimensional (2D) heterostructures at the micrometer scale can be formed with adhesive-tape exfoliation methods, isolation of 2D flakes into monolayers is extremely time consuming because it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits high-throughput production of multiple monolayers of wafer-scale (5-centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer. Wafer-scale uniformity of hexagonal boron nitride, tungsten disulfide, tungsten diselenide, molybdenum disulfide, and molybdenum diselenide monolayers was verified by photoluminescence response and by substantial retention of electronic conductivity. We fabricated wafer-scale van der Waals heterostructures, including field-effect transistors, with single-atom thickness resolution. 
    more » « less
  5. Abstract One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfer only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate–align–release process—without the need of an intermediate carrier substrate—is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials. 
    more » « less