skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 19, 2026

Title: Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
The high levels of sulfate in wintertime particles in Fairbanks, Alaska, are a subject of keen research interest and regulatory concern. Recent results from the 2022 Alaska Layered Pollution And Chemical Analysis (ALPACA) field campaign indicate that roughly 40 % of wintertime sulfate in Fairbanks is secondary, with hydrogen peroxide (HOOH) the dominant oxidant. Since formation of HOOH in the gas phase should be negligible during ALPACA because of high levels of NOx, we examined whether reactions within particles could be a significant source of HOOH. To test this, we collected particulate matter (PM) samples during the ALPACA campaign, extracted them, illuminated them with simulated sunlight, and measured HOOH production. Aqueous extracts showed significant light absorption, a result of brown carbon (BrC) from sources such as residential wood combustion. Photoformation rates of HOOH in the PM extracts (PMEs; normalized to Fairbanks winter sunlight) range from 6 to 71 µM/h. While light absorption is nearly independent of pH, HOOH formation rates decrease with increasing pH. Extrapolating to the concentrated conditions of aerosol liquid water (ALW) gives an average rate of in-particle HOOH formation of ∼ 0.1 M/h. Corresponding rates of sulfate formation from particle-produced HOOH are 0.05–0.5 µg/m3/h, accounting for a significant portion of the secondary sulfate production rate. Our results show that HOOH formed in particles makes an important contribution to sulfate formation in ambient wintertime particles, even under the low actinic flux conditions typical of winter in subarctic locations like Fairbanks.  more » « less
Award ID(s):
2109011
PAR ID:
10620865
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
25
Issue:
10
ISSN:
1680-7324
Page Range / eLocation ID:
5087 to 5100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Subarctic cities notoriously experience severe winter pollution episodes with fine particle (PM2.5) concentrations above 35 µg m−3, the US Environmental Protection Agency (EPA) 24 h standard. While winter sources of primary particles in Fairbanks, Alaska, have been studied, the chemistry driving secondary particle formation is elusive. Biomass burning is a major source of wintertime primary particles, making the PM2.5 rich in light-absorbing brown carbon (BrC). When BrC absorbs sunlight, it produces photooxidants – reactive species potentially important for secondary sulfate and secondary organic aerosol formation – yet photooxidant measurements in high-latitude PM2.5 remain scarce. During the winter of 2022 Alaskan Layered Pollution And Chemical Analysis (ALPACA) field campaign in Fairbanks, we collected PM filters, extracted the filters into water, and exposed the extracts to simulated sunlight to characterize the production of three photooxidants: oxidizing triplet excited states of BrC, singlet molecular oxygen, and hydroxyl radical. Next, we used our measurements to model photooxidant production in highly concentrated aerosol liquid water. While conventional wisdom indicates photochemistry is limited during high-latitude winters, we find that BrC photochemistry is significant: we predict high triplet and singlet oxygen daytime particle concentrations up to 2×10-12 and 3×10-11 M, respectively, with moderate hydroxyl radical concentrations up to 5×10-15 M. Although our modeling predicts that triplets account for 0.4 %–10 % of daytime secondary sulfate formation, particle photochemistry cumulatively dominates, generating 76 % of daytime secondary sulfate formation, largely due to in-particle hydrogen peroxide, which contributes 25 %–54 %. Finally, we estimate triplet production rates year-round, revealing the highest rates in late winter when Fairbanks experiences severe pollution and in summer when wildfires generate BrC. 
    more » « less
  2. Fairbanks-North Star Borough (FNSB), Alaska perennially experiences some of the worst wintertime air quality in the United States. FNSB was designated as a “serious” nonattainment area by the U.S. Environmental Protection Agency in 2017 for excessive fine particulate matter (PM 2.5 ) concentrations. The ALPACA (Alaskan Layered Pollution And Chemical Analysis) field campaign was established to understand the sources of air pollution, pollutant transformations, and the meteorological conditions contributing to FNSB's air quality problem. We performed on-road mobile sampling during ALPACA to identify and understand the spatial patterns of PM across the study domain, which contained multiple stationary field sites and regulatory measurement sites. Our measurements demonstrate the following: (1) both the between-neighborhood and within-neighborhood variations in PM 2.5 concentrations and composition are large (>10 μg m −3 ). (2) Spatial variations of PM in Fairbanks are tightly connected to meteorological conditions; dramatic between-neighborhood differences exist during strong temperature inversion conditions, but are significantly reduced during weaker temperature inversions, where atmospheric conditions are more well mixed. (3) During strong inversion conditions, total PM 2.5 and black carbon (BC) are tightly spatially correlated and have high absorption Ångstrom exponent values (AAE > 1.4), but are relatively uncorrelated during weak inversion conditions and have lower AAE. (4) PM 2.5 , BC, and total particle number (PN) concentrations decreased with increasing elevation, with the fall-off being more dramatic during strong temperature inversion conditions. (5) Mobile sampling reveals important air pollutant concentration differences between the multiple fixed sites of the ALPACA study, and demonstrates the utility of adding mobile sampling for understanding the spatial context of large urban air quality field campaigns. These results are important for understanding both the PM exposure for residents of FNSB and the spatial context of the ALPACA study. 
    more » « less
  3. The Alaskan Layered Pollution And Chemical Analysis (ALPACA)-2022 field study (https://alpaca.community.uaf.edu/alpaca-field-study/) investigated air pollution under dark and cold conditions in Fairbanks, Alaska in January and February, 2022. One of the main motivations for ALPACA was to understand how temperature inversions trap pollutants at the surface. This was studied by using University of California, Los Angeles (UCLA) long-path Differential Optical Absorption Spectroscopy instrument (LP-DOAS) to probe the Fairbanks atmosphere from 12 meters(m) – 191m altitude and yield information on the vertical distribution of various trace gases / pollutants. The dataset contains the open atmosphere LP-DOAS measurement of Ozone (O3), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Formaldehyde (HCHO), and Nitrous Acid (HONO) on four different light paths over wintertime downtown Fairbanks, Alaska (AK) during ALPACA. The four light paths cover the following altitude intervals: 12-17m, 17-73m, 17-115m, and 17-191m. The ReadMe file included in the data set provides exact coordinates, length, and altitude intervals for the four light paths. 
    more » « less
  4. Abstract. A portion of Alaska's Fairbanks North Star Borough was designated as nonattainment for the 2006 24 h fine particulate matter 2.5 µm or less in diameter (PM2.5) National Ambient Air Quality Standards (NAAQS) in 2009. PM2.5 NAAQS exceedances in Fairbanks mainly occur during dark and cold winters, when temperature inversions form and trap high emissions at the surface. Sulfate (SO42-), often the second-largest contributor to PM2.5 mass during these wintertime PM episodes, is underpredicted by atmospheric chemical transport models (CTMs). Most CTMs account for primary SO42- and secondary SO42- formed via gas-phase oxidation of sulfur dioxide (SO2) and in-cloud aqueous oxidation of dissolved S(IV). Dissolution and reaction of SO2 in aqueous aerosols are generally not included in CTMs but can be represented as heterogeneous reactive uptake and may help better represent the high SO42- concentrations observed during Fairbanks winters. In addition, hydroxymethanesulfonate (HMS), a particulate sulfur species sometimes misidentified as SO42-, is known to form during Fairbanks winters. Heterogeneous formation of SO42- and HMS in aerosol liquid water (ALW) was implemented in the Community Multiscale Air Quality (CMAQ) modeling system. CMAQ simulations were performed for wintertime PM episodes in Fairbanks (2008) as well as over the Northern Hemisphere and Contiguous United States (CONUS) for 2015–2016. The added heterogeneous sulfur chemistry reduced model mean sulfate bias by ∼ 0.6 µg m−3 during a cold winter PM episode in Fairbanks, AK. Improvements in model performance are also seen in Beijing during wintertime haze events (reducing model mean sulfate bias by ∼ 2.9 µg S m−3). This additional sulfur chemistry also improves modeled summertime SO42- bias in the southeastern US, with implications for future modeling of biogenic organosulfates. 
    more » « less
  5. Abstract The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign included deployment of a suite of atmospheric measurements in January–February 2022 with the goal of better understanding atmospheric processes and pollution under cold and dark conditions in Fairbanks, Alaska. We report on measurements of particle composition, particle size, ice nucleating particle (INP) composition, and INP size during an ice fog period (29 January–3 February). During this period, coarse particulate matter (PM10) concentrations increased by 150% in association with a decrease in air temperature, a stronger temperature inversion, and relatively stagnant conditions. Results also show a 18%–78% decrease in INPs during the ice fog period, indicating that particles had activated into the ice fog via nucleation. Peroxide and heat treatments performed on INPs indicated that, on average, the largest contributions to the INP population were heat‐labile (potentially biological, 63%), organic (31%), then inorganic (likely dust, 6%). Measurements of levoglucosan and bulk and single‐particle composition corroborate the presence of dust and aerosols from combustion sources. Heat‐labile and organic INPs decreased during the peak period of the ice fog, indicating those were preferentially activated, while inorganic INPs increased, suggesting they remained as interstitial INPs. In general, INP concentrations were unexpectedly high in Fairbanks compared to other locations in the Arctic during winter. The fact that these INPs likely facilitated ice fog formation in Fairbanks has implications for other high latitude locations subject to the hazards associated with ice fog. 
    more » « less