Quantum science and computing represent a vital intersection between science and technology, gaining increasing importance in modern society. There is a pressing need to incorporate these concepts into the K-12 curriculum, equipping new generations with the tools to navigate and thrive in an evolving technological landscape. This study explores the professional learning of K-12 teachers (n = 49) related to quantum concepts and pedagogy. We used open-ended surveys, field notes, workshop artifacts, and interviews to examine teachers’ perceptions of quantum and how they made connections between quantum and their curriculum. Our data reveal that most teachers were excited and interested in teaching quantum but were aware of potential barriers and concerns that might get in the way of teaching quantum. We found that teachers readily identified connections to math and science in their curriculum, but only a few made connections to computing. Enthusiasm for teaching quantum concepts was found in both elementary and secondary educators, suggesting a widespread recognition of its importance in preparing students for a future where quantum technology is a fundamental aspect of their lives and careers. 
                        more » 
                        « less   
                    
                            
                            Why Teach Quantum?: Elementary Teachers Initial Beliefs About Quantum
                        
                    
    
            This paper examines the initial beliefs held by elementary educators (n=11) and their students about teaching and learning quantum concepts at the elementary level. All teachers were participants in a grant-funded project focused on developing teachers’ quantum content knowledge and creating curricular resources to use in elementary classrooms. Although elementary teachers had limited knowledge of quantum at the beginning of the project, they expressed excitement and a belief that learning quantum would create future possibilities for their students. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2329874
- PAR ID:
- 10620926
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-4137-8
- Page Range / eLocation ID:
- 155 to 158
- Subject(s) / Keyword(s):
- quantum education, elementary teachers, teacher professional development, quantum curriculum
- Format(s):
- Medium: X
- Location:
- Montreal, QC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this poster, we present our efforts to engage elementary teachers with learning trajectories as a tool for developing both their own and their students’ comprehension of computational think-ing (CT) and strategies for integrating CT learning in their class-room. Eleven teachers, who voluntarily joined a teacher professional development (PD) program to develop teacher leaders for CT integration in the elementary context, attended a one-day PD session aimed at reviewing their knowledge of CT, participating in CT-infused lessons, and engaging with CT learning trajectories. Over the next year, teachers will participate in monthly virtual PD to continue to grow both their CT content knowledge and pedagogical knowledge. Our goal is to develop these teachers as teacher leaders who will support others as they integrate CT. This poster will show our current progress on CT learning trajectories and teacher leaders’ responses to the tool.more » « less
- 
            In this poster, we present our efforts to engage elementary teachers with learning trajectories as a tool for developing both their own and their students’ comprehension of computational thinking (CT) and strategies for integrating CT learning in their classroom. Eleven teachers, who voluntarily joined a teacher professional development (PD) program to develop teacher leaders for CT integration in the elementary context, attended a one-day PD session aimed at reviewing their knowledge of CT, participating in CT-infused lessons, and engaging with CT learning trajectories. Over the next year, teachers will participate in monthly virtual PD to continue to grow both their CT content knowledge and pedagogical knowledge. Our goal is to develop these teachers as teacher leaders who will support others as they integrate CT. This poster will show our current progress on CT learning trajectories and teacher leaders’ responses to the tool.more » « less
- 
            This project investigates the potential of the Collective Argumentation Learning and Coding (CALC) concept for integrating the teaching of computer coding and other computer science content into the standard practices already used to teach different elementary (grades 3-5) curriculum content. Elementary school teachers significantly influence student motivation to engage in coding and are being asked to provide increased instruction on coding. Unfortunately, few practicing teachers have academic backgrounds in computer coding. This project aims to identify the knowledge needed to transform the CALC concept into a learning practice in which young, novice programmers use the argumentation framework to develop coding sequences. Why? Suppose computer coding is an integral part of teaching mathematics and science subject areas. In that case, the concerns that coding is a distraction to core subjects might decline, and administrative support for teaching coding might increase. We believe this work should be done at the elementary school level, better preparing more students and underrepresented groups for STEM subjects taught in the upper gradesmore » « less
- 
            null (Ed.)Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    