skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Industry Perspective on the Current U.S. Hardrock Mining Engineering Education
Mining industry receives an increasing attention in green energy transition technologies in the U.S. However, little information is available regarding how the U.S. mining engineering education, particularly hard rock mining, is prepared to meet with the industry needs. This study summarizes a survey with an aim to understand the industry perspectives. The survey consisted of both closed- and open-ended questions. The survey results showed that the industry is concerned with a shortage of qualified graduates from the current U.S. hard rock mining engineering education system. The qualifications of the current education system need to be improved include engineering sciences underlying mining methods, mining design experience, mining feasibility study, the connection between theory and practice, and understanding the overall mining operation. The future desired qualifications were also suggested. Notably, the most desired ones in the next five years include an ability to acquire and apply new knowledge as needed and sufficient field experience. The survey participants, regardless of the nature of their affiliated mining companies, unanimously recommended that the collaborations between the industry and academia in the U.S. should be enhanced. Based on the survey results, the study concluded with four recommendations: (1) involve more multiple stakeholders in reforming mining education programs, (2) reinforce field experience as a key part of mining engineering programs, (3) enhance a closer collaboration between academia and industry, and (4) integrate emerging technologies (e.g., artificial intelligence/virtual reality) guided by pedagogical theories into new mining engineering curriculums.  more » « less
Award ID(s):
2202640
PAR ID:
10620982
Author(s) / Creator(s):
;
Publisher / Repository:
Society of Mining, Metallurgy and Exploration
Date Published:
ISBN:
978-0-87335-518-6
Format(s):
Medium: X
Location:
Washington DC
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The fast-growing adoption of sensing technologies in the construction industry has necessitated a demand for workforce with technical skills. This study explores the current state of sensing technologies in the industry and sensing technology education in construction engineering and management programs. The study investigates the agreeability of industry and academia’s perceptions of the integration of sensing technologies in construction engineering and management curricula. The study employs online surveys to capture industry and instructor perceptions of the skills required of graduating construction engineering and management students and the extent of sensing technology education respectively. Comparison of the survey responses reveals differences between sensing technologies and applications deployed in the industry and those taught in construction engineering and management programs. While reinforcing the need for technical skills in the industry, results provide highlights to well-structured sensing technology courses based on required competencies to prepare students for a relevant and successful career in the industry. 
    more » « less
  2. Not AvailableWith a high demand to fill jobs in the semiconductor manufacturing due to the Chips Act there is a need to increase job readiness in graduate education, as industry members think current graduate students are not well prepared to transition from academia to industry. Current graduate academic education pedagogy does an excellent job of providing students with knowledge and scientific skills, such as technical writing and communication. However, current graduate education often does not fully prepare students for industry. Students can get the necessary experience through an internship, but this is not always possible due to location, research time constraints, citizenship, and academic time commitments. Students often struggle with transitioning from an academic setting to industry, because they have only ever experienced academia, and most faculty teaching students have little or not experience working in industry. To overcome this challenge, we developed a novel two course curriculum that aims to mimic a semiconductor industry internship. This is accomplished through “role-playing” courses where students act as internships in the 1st semester (onboarding) and then they transition to employees in the second semester, where they will work with other “students/employees” on creating a “startup” microsystem company. The instructors act as Program Managers/ boses. The courses use problem-based learning (PBL) in a nanofabrication cleanroom. The courses are designed to give students hands-on experience to provide them with the knowledge, skills, and abilities (KSA) that are needed in industry. The key KSA’s were determined by an industrial panel of process engineers via a survey which was used to determine which KSA industry (multinational and SME) value the most. The same survey was given to faculty members to compare differences between what faculty and industry value as critical KSA’s needed in the semiconductor industry. To determine where the gaps were between traditional graduate courses and industry a survey listing 48 different KSA’s was provided to both industrial members and engineering faculty. The survey allowed the industry panel to state what KSA’s were important and what KSA’s they thought Universities already do a good job of teaching to graduate students. The initial results showed that the industry panel thought 37.5% of the KSA’s were important and lacking in current graduate education. That means 63.5% of the KSA’s were either not important or that universities already do a good job of teaching those KSA’s. However, engineering faculty said 58.33% of the KSA’s were needed and not currently taught. This shows a strong discrepancy between what Professors think and what industry consider necessary KSA’s. The KSA topics were divided into categories and the ones with the largest discrepancy between faculty and industry were essential skills and statistics. The results of this study will be beneficial to other programs that wish to provide similar experiences for their graduate students. 
    more » « less
  3. With the understanding that the mining industry is an important and necessary part of the production chain, we argue that the future of mining must be sustainable and responsible when responding to the increasing material demands of the current and next generations. In this paper, we illustrate how concepts, such as inclusiveness and the circular economy, can come together in new forms of mining—what we call inclusive urban mining—that could be beneficial for not only the mining industry, but for the environmental and social justice efforts as well. Based on case studies in the construction and demolition waste and WEEE (or e-waste) sectors in Colombia and Argentina, we demonstrate that inclusive urban mining could present an opportunity to benefit society across multiple echelons, including empowering vulnerable communities and decreasing environmental degradation associated with extractive mining and improper waste management. Then, recognizing that most engineering curricula in this field do not include urban mining, especially from a community-based perspective, we show examples of the integration of this form of mining in engineering education in first-, third- and fourth-year design courses. We conclude by providing recommendations on how to make inclusive urban mining visible and relevant to engineering education. 
    more » « less
  4. The development of inclusive leaders is essential for the success of future engineering and our nation. Equipping students with vital leadership-enabling competencies is necessary to develop a workforce that is prepared to act ethically, and responsibly, and tackle unforeseen challenges in the future. Inclusive leaders, or leaders that are self-aware, empathetic, and prioritize diversity, equity, and inclusion in their decision-making, are essential for the forward progress of engineering. A growing body of literature highlights the numerous ways in which students may develop leadership skills outside of the classroom through involvement in out-of-class activities (e.g., internships, clubs, sports, and research experiences). Research Experiences for Undergraduates (REUs) may provide students with a unique opportunity to develop leadership-enabling competencies that will prepare them for leadership in graduate school, the engineering industry, or academia. The goal of this research was to identify how students’ engagement in an engineering education virtual REU site contributed to their development of essential leadership-enabling competencies. The research question guiding this study was ‘What inclusive leadership-enabling competencies and skills did engineering students learn and develop during an engineering education Summer REU program?’ Qualitative data was collected via weekly open-ended surveys from 9 students (7 women, 2 men) participating in an REU over 9 weeks. Participants in this study consisted of students from underrepresented groups in engineering (e.g., Black, Latinx, women, students from low SES backgrounds, or first-generation students), attending large public research universities across the United States. This study implemented mixed methods to understand what leadership competencies were occurring most frequently and how students were learning and developing these competencies. A combination of text mining for frequency (quantitative analysis) and deductive and inductive coding (qualitative analysis) was used to analyze the data. A codebook was developed based on the leadership-coupled professional competencies that engineering industry leaders identified as essential for engineers entering the workforce. Researchers also allowed for other competencies and leadership-enabling skills to emerge from the data. Findings from this work indicate that students were developing a vast amount of inclusive leadership knowledge and skills from participating in the virtual REU site. This paper highlights, through the use of word clouds and text mining software, the many leadership-enabling competencies that participants developed throughout the summer research experience (e.g., learning, communication, adaptability, self-awareness, balance, networking, etc.). Further, students were able to develop digital literacy, increased communication skills, knowledge of career pathways, intrapersonal growth, and interpersonal relations. This work offers a novel contribution to the literature in understanding how students can develop technical engineering and research skills as well as professional and leadership skills in the same space. Findings from this work help to illuminate the benefits of this virtual REU site focused on engineering education research resulting in terms of developing inclusive leadership skills. Implications for future REU programs, students interested in developing leadership skills, engineering graduate programs, academia, and industry employers are outlined. 
    more » « less
  5. Abstract BackgroundGraduate education literature tends to focus on faculty careers with little attention to industry careers. However, more than one‐third of U.S. engineering doctorates enter industry. PurposeOur purpose is to understand engineering graduate students' interest in industry, academia, and government careers as it relates to their graduate engineering identities. Design/MethodA total of 249 engineering thesis master's and doctoral students completed a survey about their graduate engineering identities and career preferences. We created regression models to predict students' likelihood of pursuing careers in industry, academia, and government. Then, we used cluster analysis to understand the extent to which students are considering multiple options and used chi‐squared and ANOVA tests to compare the clusters. ResultsIn the regression model predicting an academic career, research recognition and research performance/competence were positive predictors and engineering performance/competence was a negative predictor. Regression models of industry and government described less than 10% of the variance. Four clusters emerged, which collectively demonstrate that engineering graduate students are considering careers in multiple sectors. Students with internships during graduate study were more likely to pursue industry careers. Master's students were underrepresented in the cluster with highest likelihood of an academic career. International students were keeping more options open than some domestic students. There were also differences by engineering discipline. ConclusionsEngineering graduate students are considering multiple career sectors. Advisors and education researchers should focus not only on academic career preparation but also on industry and government career preparation, particularly on preparing for multiple options simultaneously. 
    more » « less