Abstract The successful realization of the EIC scientific program requires the design and construction of high-performance particle detectors. Recent developments in the field of scientific computing and increased availability of high performance computing resources have made it possible to perform optimization of multi-parameter designs, even when the latter require longer computational times (for example simulations of particle interactions with matter). Procedures involving machine-assisted techniques used to inform the design decision have seen a considerable growth in popularity among the EIC detector community. Having already been realized for tracking and RICH PID detectors, it has a potential application in calorimetry designs. A SciGlass barrel calorimeter originally designed for EIC Detector-1 has a semi-projective geometry that allows for non-trivial performance gains, but also poses special challenges in the way of effective exploration of the design space while satisfying the available space and the cell dimension constraints together with the full detector acceptance requirement. This talk will cover specific approaches taken to perform this detector design optimization. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Design of the ECCE detector for the Electron Ion Collider
                        
                    
    
            The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10621004
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Elsevier B.V.
- Date Published:
- Journal Name:
- Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
- Volume:
- 1073
- Issue:
- C
- ISSN:
- 0168-9002
- Page Range / eLocation ID:
- 170240
- Subject(s) / Keyword(s):
- EIC, detector
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Artificial Intelligence is poised to transform the design of complex, large-scale detectors like ePIC at the future Electron Ion Collider. Featuring a central detector with additional detecting systems in the far forward and far backward regions, the ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost, constrained by mechanical and geometric limits.This project aims to develop a scalable, distributed AI-assisted detector design for the EIC (AID(2)E), employing state-of-the-art multiobjective optimization to tackle complex designs. Supported by the ePIC software stack and usingGeant4simulations, our approach benefits from transparent parameterization and advanced AI features.The workflow leverages the PanDA and iDDS systems, used in major experiments such as ATLAS at CERN LHC, the Rubin Observatory, and sPHENIX at RHIC, to manage the compute intensive demands of ePIC detector simulations. Tailored enhancements to the PanDA system focus on usability, scalability, automation, and monitoring.Ultimately, this project aims to establish a robust design capability, apply a distributed AI-assisted workflow to the ePIC detector, and extend its applications to the design of the second detector (Detector-2) in the EIC, as well as to calibration and alignment tasks. Additionally, we are developing advanced data science tools to efficiently navigate the complex, multidimensional trade-offs identified through this optimization process.more » « less
- 
            De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The inaugural AI4EIC Hackathon unfolded as a high-point satellite event during the second AI4EIC Workshop at William & Mary. The workshop itself boasted over two hundred participants in a hybrid format and delved into the myriad applications of Artificial Intelligence and Machine Learning (AI/ML) for the Electron-Ion Collider (EIC). This workshop aimed to catalyze advancements in AI/ML with applications ranging from advancements in accelerator and detector technologies—highlighted by the ongoing work on the ePIC detector and potential development of a second detector for the EIC—to data analytics, reconstruction, and particle identification, as well as the synergies between theoretical and experimental research. Complementing the technical agenda was an enriched educational outreach program that featured tutorials from leading AI/ML experts representing academia, national laboratories, and industry. The hackathon, held on the final day, showcased international participation with ten teams from around the globe. Each team, comprising up to four members, focused on the dual-radiator Ring Imaging Cherenkov (dRICH) detector, an integral part of the particle identification (PID) system in ePIC. The data for the hackathon were generated using the ePIC software suite. While the hackathon presented questions of increasing complexity, its challenges were designed with deliberate simplifications to serve as a preliminary step toward the integration of machine learning and deep learning techniques in PID with the dRICH detector. This article encapsulates the key findings and insights gained from this unique experience.more » « less
- 
            A<sc>bstract</sc> The Electron-Ion Collider (EIC), a forthcoming powerful high-luminosity facility, represents an exciting opportunity to explore new physics. In this article, we study the potential of the EIC to probe the coupling between axion-like particles (ALPs) and photons in coherent scattering. The ALPs can be produced via photon fusion and decay back to two photons inside the EIC detector. In a prompt-decay search, we find that the EIC can set the most stringent bound forma≲ 20 GeV and probe the effective scales Λ ≲ 105GeV. In a displaced-vertex search, which requires adopting an EM calorimeter technology that provides directionality, the EIC could probe ALPs withma≲ 1 GeV at effective scales Λ ≲ 107GeV. Combining the two search strategies, the EIC can probe a significant portion of unexplored parameter space in the 0.2 <ma< 20 GeV mass range.more » « less
- 
            null (Ed.)Abstract Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 10 33 cm −2 · s −1 . Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC. The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies. This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
