skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 25, 2026

Title: The giant barrel sponge Xestospongia muta takes up dissolved organic matter from benthic cyanobacterial mats
With the decline of reef-building corals, other organisms are taking over Caribbean reefs, including sponges and benthic cyanobacterial mats (BCM). Sponges take up dissolved organic matter (DOM), but the sources and chemical characteristics of DOM taken up by sponges are unknown. One likely DOM source is benthic autotrophs, including BCM, which are prolific producers of DOM. We tested the hypothesis that sponges take up BCM-derived DOM using laboratory experiments in which seawater samples were collected before and after sequential incubations of BCM and small individuals of the giant barrel sponge Xestospongia muta. The concentration of DOC and relative abundance of individual features in the high resolution mass spectra using untargeted metabolomics were determined for each sample. There was a significant increase in DOC after BCM incubations, followed by a significant decrease after sponge incubations. These changes were mirrored in single feature relative abundances, with 2101 out of 3667 features significantly enriched during BCM incubations, and 54% of these (1142) depleted during sponge incubations. Among BCM-enriched and sponge-depleted features, many were halogenated, some were known BCM-derived secondary metabolites (e.g., carriebowmide, barbamide), and others matched unidentified sponge-depleted features from seawater samples collected on the reef. To our knowledge, this is the first report that sponges take up BCM exudates, including some that were detectable in reef DOM, revealing a path of molecules from source to sink through their environment. The BCM exudates taken up by sponges may be used as a food source or incorporated into sponge secondary metabolites for holobiont maintenance or chemical defenses.  more » « less
Award ID(s):
2218863
PAR ID:
10621113
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Organic geochemistry
ISSN:
0146-6380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical coral reef ecosystems are changing rapidly to an alternative state in which sponges are the dominant living habitat, with giant barrel sponges (GBSs, Xestospongia spp.) representing the largest biomass. Unlike other benthic reef organisms, GBSs are ecosystem engineers that pump large volumes of seawater, disrupting the benthic boundary layer and directing flow away from the reef surface and into the water column. The morphology and size of GBSs have made them particularly good experimental subjects to study the hydraulics of sponge pumping and the transformation that occurs as seawater is processed by the sponge holobiont (sponge cells and microbial symbionts). This Review is part of a series marking the 100th birthday of The Company of Biologists, which was founded by marine biologist George Parker Bidder III, who primarily worked on sponges. The Review provides an integrative assessment of research on GBSs with comparisons with what is known about other marine sponges. Recent discoveries suggest that ancient lineages of morphologically indistinguishable GBSs are responding to environmental changes over sub-decadal time periods to rapidly populate reefs stripped of coral cover by climate change. If GBSs remain robust to rising seawater temperatures, they will become the greatest source of habitat complexity on reefs of the future, so knowledge of their biology and physiology will be important to our understanding of these ecosystems. 
    more » « less
  2. null (Ed.)
    Terrestrial runoff can negatively impact marine ecosystems through stressors including excess nutrients, freshwater, sediments, and contaminants. Severe storms, which are increasing with global climate change, generate massive inputs of runoff over short timescales (hours to days); such runoff impacted offshore reefs in the northwest Gulf of Mexico (NW GoM) following severe storms in 2016 and 2017. Several weeks after coastal flooding from these events, NW GoM reef corals, sponges, and other benthic invertebrates ∼185 km offshore experienced mortality (2016 only) and/or sub-lethal stress (both years). To assess the impact of storm-derived runoff on reef filter feeders, we characterized the bacterial communities of two sponges, Agelas clathrodes and Xestospongia muta , from offshore reefs during periods of sub-lethal stress and no stress over a three-year period (2016—2018). Sponge-associated and seawater-associated bacterial communities were altered during both flood years. Additionally, we found evidence of wastewater contamination (based on 16S rRNA gene libraries and quantitative PCR) in offshore sponge samples, but not in seawater samples, following these flood years. Signs of wastewater contamination were absent during the no-flood year. We show that flood events from severe storms have the capacity to reach offshore reef ecosystems and impact resident benthic organisms. Such impacts are most readily detected if baseline data on organismal physiology and associated microbiome composition are available. This highlights the need for molecular and microbial time series of benthic organisms in near- and offshore reef ecosystems, and the continued mitigation of stormwater runoff and climate change impacts. 
    more » « less
  3. null (Ed.)
    Microplastics (MP) are now considered ubiquitous across global aquatic environments. The ingestion of MP by fish and other marine vertebrates is well studied, but the ingestion of MP by marine invertebrates is not. Sponges (Phylum Porifera) are particularly understudied when it comes to MP ingestion, even though they are widely distributed across benthic habitats, can process large volumes of seawater, and can retain small particles within their water filtration systems. This study examines the presence of potential MP (PMP) in wild marine sponges and seawater collected in Bocas del Toro, Panamá. Subsurface seawater and tissue from six common Caribbean sponge species was collected in Saigon Bay, a heavily impacted, shallow-water coral reef. Seawater samples were filtered onto glass fiber filters to retain any PMP present and sponge tissue was digested with bleach, heated and filtered. Filters were examined using fluorescence microscopy to quantify PMP. An average of 107 ± 25 PMP L –1 was detected in seawater from Saigon Bay with particles ranging in size between 10 μm and ~3,000 μm. The number of PMP found in sponge tissue ranged between 6 ± 4 and 169 ± 71 PMP g –1 of dry tissue. Most particles found in sponge samples were very small (10–20 μm), but fibers greater than 5,000 μm were detected. Our results indicate that PMP exists within the tissues of the sponges we studied, but future studies should confirm the presence of MP in sponges using chemical analysis. Most importantly, the discrepancy between low levels of PMP in our sponge samples and high levels in the surrounding seawater highlights the potential for sponges to resist and/or egest MP. Finally, we provide a critical evaluation of our methods to improve their use in future MP work with benthic marine organisms. 
    more » « less
  4. Hull, M (Ed.)
    Coral reefs are biodiverse ecosystems that rely on trophodynamic transfers from primary producers to consumers through the detrital pathway. The sponge loop hypothesis proposes that sponges consume dissolved organic carbon (DOC) and produce large quantities of detritus on coral reefs, with this turn-over approaching the daily gross primary production of the reef ecosystem. In this study, we collected samples of detritus in the epilithic algal matrix (EAM) and samples from potential sources of detritus over two seasons from the forereef at Carrie Bow Cay, Belize. We chose this location to maximize the likelihood of finding support for the sponge loop hypothesis because Caribbean reefs have higher sponge abundances than other tropical reefs worldwide and the Mesoamerican barrier reef is an archetypal coral reef ecosystem. We used stable isotope analyses and eDNA metabarcoding to determine the composition of the detritus. We determined that the EAM detritus was derived from a variety of benthic and pelagic sources, with primary producers (micro- and macroalgae) as major contributors and metazoans (Arthropoda, Porifera, Cnidaria, Mollusca) as minor contributors. None of the sponge species that reportedly produce detritus were present in EAM detritus. The cnidarian signature in EAM detritus was dominated by octocorals, with a scarcity of hard corals. The composition of detritus also varied seasonally. The negligible contribution of sponges to reef detritus contrasts with the detrital pathway originally proposed in the sponge loop hypothesis. The findings indicate a mix of pelagic and benthic sources in the calmer summer and primarily benthic sources in the more turbulent spring. 
    more » « less
  5. Metabolites exuded by primary producers comprise a significant fraction of marine dissolved organic matter, a poorly characterized, heterogenous mixture that dictates microbial metabolism and biogeochemical cycling. We present a foundational untargeted molecular analysis of exudates released by coral reef primary producers using liquid chromatography–tandem mass spectrometry to examine compounds produced by two coral species and three types of algae (macroalgae, turfing microalgae, and crustose coralline algae [CCA]) from Mo’orea, French Polynesia. Of 10,568 distinct ion features recovered from reef and mesocosm waters, 1,667 were exuded by producers; the majority (86%) were organism specific, reflecting a clear divide between coral and algal exometabolomes. These data allowed us to examine two tenets of coral reef ecology at the molecular level. First, stoichiometric analyses show a significantly reduced nominal carbon oxidation state of algal exometabolites than coral exometabolites, illustrating one ecological mechanism by which algal phase shifts engender fundamental changes in the biogeochemistry of reef biomes. Second, coral and algal exometabolomes were differentially enriched in organic macronutrients, revealing a mechanism for reef nutrient-recycling. Coral exometabolomes were enriched in diverse sources of nitrogen and phosphorus, including tyrosine derivatives, oleoyl-taurines, and acyl carnitines. Exometabolites of CCA and turf algae were significantly enriched in nitrogen with distinct signals from polyketide macrolactams and alkaloids, respectively. Macroalgal exometabolomes were dominated by nonnitrogenous compounds, including diverse prenol lipids and steroids. This study provides molecular-level insights into biogeochemical cycling on coral reefs and illustrates how changing benthic cover on reefs influences reef water chemistry with implications for microbial metabolism. 
    more » « less