Analog circuit design requires substantial human expertise and involvement, which is a significant roadblock to design productivity. Bayesian Optimization (BO), a popular machine-learning-based optimization strategy, has been leveraged to automate analog design given its applicability across various circuit topologies and technologies. Traditional BO methods employ black-box Gaussian Process surrogate models and optimized labeled data queries to find optimization solutions by trading off between exploration and exploitation. However, the search for the optimal design solution in BO can be expensive from both a computational and data usage point of view, particularly for high-dimensional optimization problems. This paper presents ADO-LLM, the first work integrating large language models (LLMs) with Bayesian Optimization for analog design optimization. ADO-LLM leverages the LLM’s ability to infuse domain knowledge to rapidly generate viable design points to remedy BO's inefficiency in finding high-value design areas specifically under the limited design space coverage of the BO's probabilistic surrogate model. In the meantime, sampling of design points evaluated in the iterative BO process provides quality demonstrations for the LLM to generate high-quality design points while leveraging infused broad design knowledge. Furthermore, the diversity brought by BO's exploration enriches the contextual understanding of the LLM and allows it to more broadly search in the design space and prevent repetitive and redundant suggestions. We evaluate the proposed framework on two different types of analog circuits and demonstrate notable improvements in design efficiency and effectiveness. 
                        more » 
                        « less   
                    This content will become publicly available on April 11, 2026
                            
                            Evolutionary Large Language Model for Automated Feature Transformation
                        
                    
    
            Feature transformation aims to reconstruct the feature space of raw features to enhance the performance of downstream models. However, the exponential growth in the combinations of features and operations poses a challenge, making it difficult for existing methods to efficiently explore a wide space. Additionally, their optimization is solely driven by the accuracy of downstream models in specific domains, neglecting the acquisition of general feature knowledge. To fill this research gap, we propose an evolutionary LLM framework for automated feature transformation. This framework consists of two parts: 1) constructing a multi-population database through an RL data collector while utilizing evolutionary algorithm strategies for database maintenance, and 2) utilizing the ability of Large Language Model (LLM) in sequence understanding, we employ few-shot prompts to guide LLM in generating superior samples based on feature transformation sequence distinction. Leveraging the multi-population database initially provides a wide search scope to discover excellent populations. Through culling and evolution, high-quality populations are given greater opportunities, thereby furthering the pursuit of optimal individuals. By integrating LLMs with evolutionary algorithms, we achieve efficient exploration within a vast space, while harnessing feature knowledge to propel optimization, thus realizing a more adaptable search paradigm. Finally, we empirically demonstrate the effectiveness and generality of our proposed method. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2416728
- PAR ID:
- 10621217
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 39
- Issue:
- 16
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 16844 to 16852
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Existing approaches to automatic data transformation are insufficient to meet the requirements in many real-world scenarios, such as the building sector. First, there is no convenient interface for domain experts to provide domain knowledge easily. Second, they require significant training data collection overheads. Third, the accuracy suffers from complicated schema changes. To address these shortcomings, we present a novel approach that leverages the unique capabilities of large language models (LLMs) in coding, complex reasoning, and zero-shot learning to generate SQL code that transforms the source datasets into the target datasets. We demonstrate the viability of this approach by designing an LLM-based framework, termed SQLMorpher, which comprises a prompt generator that integrates the initial prompt with optional domain knowledge and historical patterns in external databases. It also implements an iterative prompt optimization mechanism that automatically improves the prompt based on flaw detection. The key contributions of this work include (1) pioneering an end-to-end LLM-based solution for data transformation, (2) developing a benchmark dataset of 105 real-world building energy data transformation problems, and (3) conducting an extensive empirical evaluation where our approach achieved 96% accuracy in all 105 problems. SQLMorpher demonstrates the effectiveness of utilizing LLMs in complex, domain-specific challenges, highlighting the potential of their potential to drive sustainable solutions.more » « less
- 
            This paper proposes SEER, a novel backdoor detection algorithm for vision-language models, addressing the gap in the literature on multi-modal backdoor detection. While backdoor detection in single-modal models has been well studied, the investigation of such defenses in multi-modal models remains limited. Existing backdoor defense mechanisms cannot be directly applied to multi-modal settings due to their increased complexity and search space explosion. In this paper, we propose to detect backdoors in vision-language models by jointly searching image triggers and malicious target texts in feature space shared by vision and language modalities. Our extensive experiments demonstrate that SEER can achieve over 92% detection rate on backdoor detection in vision-language models in various settings without accessing training data or knowledge of downstream tasks.more » « less
- 
            Accurate prediction of dissolved oxygen (DO) concentrations in lakes requires a comprehensive study of phenological patterns across ecosystems, highlighting the need for precise selection of interactions amongst external factors and internal physical-chemical-biological variables. This paper presents the Multi-population Cognitive Evolutionary Search (MCES), a novel evolutionary algorithm for complex feature interaction selection problems. MCES allows models within every population to evolve adaptively, selecting relevant feature interactions for different lake types and tasks. Evaluated on diverse lakes in the Midwestern USA, MCES not only consistently produces accurate predictions with few observed labels but also, through gene maps of models, reveals sophisticated phenological patterns of different lake types, embodying the innovative concept of “AI from nature, for nature”.more » « less
- 
            Codes and data for "Large language models design sequence-defined macromolecules via evolutionary optimization" Note this repository contains codes and data files for the manuscript. This is a snapshot of the repository, frozen at the time of submission. Codes: LLM codes, other algorithms, postprocessing, visualization Data files: prompts, models, embeddings, LLM responsesmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
