skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Laminar flame characteristics of ammonia dimethyl ether mixtures during the autoignition period
The ammonia (NH3) and dimethyl ether (DME) mixture is a promising alternative fuel that offers the potential for cleaner combustion. This study presents an investigation of the autoignition-assisted flame speeds of stochiometric NH3/DME mixtures under conditions relevant to practical combustion systems. Experiments were conducted at pressures of 5 and 10 bar, gas temperatures ranging from 625 to 708 K, and three DME concentrations (10, 20, and 30%, mole fraction basis) in NH3/DME fuel mixtures using a rapid compression machine-flame (RCM-Flame) apparatus. For the majority of the autoignition experiments, first-stage ignition delay time was observed. Thus, the flame experiments were performed by igniting the spark both before and after the first-stage ignition delay time. The results are presented in terms of the Beta-Damköhler Number, defined as the ratio of spark ignition time to the first-stage ignition delay. The flame speed changes depending on the Beta-Damköhler Number, pressure, gas temperature, and DME concentration. The flame speed increases by increasing the temperature, decreasing the pressure, and increasing DME concentrations. However, the effect of Beta-Damköhler Number on flame speed is complicated: with 10% DME in the mixture, the flame speed is independent to Beta-Damköhler Number, and slight observed slight decrease of flame speed is due to the temperature drop during the post-compression period; with 20% DME in the mixture, at both pressures, the flame speed jumps after the first ignition delay (or Beta-Damköhler Number of one) , and remains constant before and after; similar behavior was observed with 30% DME in the mixture at 5 bar, however, at some temperatures, the flame speed increases at Beta-Damköhler Number of greater than one, and at 10 bar, the first ignition delay was short and flame speed was not measured at Beta-Damköhler Number of less than one. For all studied conditions, a linear trend was observed between burning velocity and stretch rate. Positive Markstein lengths were observed at most conditions, except for two specific gas temperatures (664 K at 5 bar and 671 K at 10 bar) with 30% DME, where negative Markstein lengths are found. One-dimensional laminar flame speed simulations agreed with measured data for Beta-Damköhler Numbers. less than one, but underpredicted the measured data at other conditions.  more » « less
Award ID(s):
2324471
PAR ID:
10621245
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fuel
Volume:
381
Issue:
PC
ISSN:
0016-2361
Page Range / eLocation ID:
133522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The autoignition characteristics of ammonia (NH3) and dimethyl ether (DME) blends were examined in this research project. The study investigates the autoignition characteristics by measuring ignition delay times across a range of gas temperatures from 621 to 725 K and at pressures of 5, 10, and 20 bar by using a rapid compression machine (RCM). Ignition delays of NH3/DME blends, with DME concentrations in the fuel mixture ranging from 0 to 50%, were measured, simulated, and compared with JP-8 and JP-5 fuel ignition delays. At a pressure of 20 bar, blends containing 30 and 50% DME concentrations exhibited ignition delay times similar to those of JP-8 and JP-5. Furthermore, the fuel blend with a 30% DME concentration showed similar ignition delays at the lower pressures of 5 and 10 bar. Several kinetic models were used to model the autoignition and compared with the measured data. Simulation results fairly matched the measured ignition delays. Through rigorous experimental verification, this comprehensive analysis evaluated the reliability of existing chemical models and paved the way for further studies on customized fuel blends, thereby contributing to the ongoing debate on sustainable energy alternatives. 
    more » « less
  2. The backward problem of plasma assisted combustion emphasizes evaluating the effect of the evolving thermochemical state on the plasma discharge. This paper investigates the dependence of avalanche to streamer to spark formation dynamics and kinetics on the gas composition and temperature at different points in an ammonia-air premixed laminar flame using a self-consistent multigrid-based 1D plasma solver. Different values of alpha, the coefficient for effective ionization events per unit length, have been reported for electron avalanches in air and stoichiometric NH3-air mixtures. The streamer inception has been shown to obey the Meek’s criterion. An exponential reduction in streamer and spark formation time has been observed from plasma simulations at different points in the unburnt, pre-heat zone, reaction zone and the fully burnt regions of the premixed flame. While the enhancement of the reduced electric field with increasing temperature affects effective ionization, there exists a minimum breakdown field for streamer formation, which does not vary proportionally with the changing number density of the gas. The change in the mixture from reactants (NH3, O2, N2) to products of complete combustion of ammonia in air (N2, H2O) has also been shown to affect the streamer and spark formation. Finally, the major pathways during the streamer and spark phases which are responsible for producing important radicals used in combustion of NH3 are also discussed. 
    more » « less
  3. The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms. This increase in ignition delay allowed the accumulation of fuel in the combustion chamber when running with IPK that resulted in detonation of the premixed air and fuel found to cause high levels of Ringing Intensity (RI) when running neat IPK indicated by the 60% increase in Peak Pressure Rise Rate (PPRR) when compared to ULSD at the same load. An emissions analysis was conducted at 7 bar Indicated Mean Effective Pressure (IMEP) for ULSD and the blend of 50% ULSD and 50% IPK. With the addition of 50% IPK by mass, there was found to be a reduction in the NOx, CO2, with a slight increase in the CO in g/kWh. 
    more » « less
  4. null (Ed.)
    Autoignition delay time data are one important means to develop, quantify, and validate fundamental understanding of combustion chemistry at low temperatures (T<1200 K). However, low-temperature chemistry often has higher uncertainties and scatter in the experimental data compared with high-temperature ignition data (T>1200 K). In this study, autoignition properties of propane and oxygen mixtures were investigated using the University of Michigan rapid compression facility in order to understand the effects of ignition regimes on low-temperature ignition data. For the first time for propane, autoignition delay times were determined from pressure histories, and autoignition characteristics were simultaneously recorded using high-speed imaging of the test section through a transparent end-wall. Propane mixtures with fuel-to-O2 equivalence ratios of ϕ = 0.25 and ϕ = 0.5 and O2-to-inert gas molar ratios of 1:3.76 were studied over the pressure range of 8.9 to 11.3 atm and the temperature range of 930 – 1070 K. The results showed homogeneous or strong autoignition occurred for all ϕ = 0.25 experiments, and inhomogeneous or mixed autoignition occurred for all ϕ = 0.5 experiments. While a limited temperature range is covered in the study, importantly the data span predicted transitions in autoignition behavior, allowing validation of autoignition regime hypotheses. Specifically, the results agree well with strong-autoignition limits proposed based on the Sankaran Criterion. The autoignition delay time data at the strong-ignition conditions are in excellent agreement with predictions using a well-validated detailed reaction mechanism from the literature and a zero-dimensional modeling assumption. However, the experimental data at the mixed autoignition conditions were systematically faster than the model predictions, particularly at lower temperatures (T< ~970 K). The results are an important addition to the growing body of data in the literature that show mixed autoignition phenomena are important sources of the higher scatter observed in the low-temperature autoignition data for propane and other fuels. The results are discussed in terms of different methods to capture the effects of pre-autoignition heat release associated with mixed autoignition conditions and thereby address some of the discrepancies between kinetic modeling and experimental measurements. 
    more » « less
  5. Laminar flame speeds at high pressure are difficult to experimentally observe. Typically, high-pressure flame diagnostic is accomplished through observation of a spherically expanding flame in a constant volume chamber. However, flame instabilities at large radius and ignition effects at small radius limit measurable pressure range for Laminar flame speeds. Advanced combustion devices which operate at high pressures to improve capabilities and efficiencies require high quality laminar flame speed to aid in simulations and development. To expand the measurable range of flame data for high pressure flame measurement, this study proposes the further investigation of the ignition source and the incorporation of ignition diagnostics into the traditional flame speed analysis. To achieve this goal in future research, experimental spark propagation is observed and described in detail with the goal of improved experimental control and understanding. Parameters such as pressure, composition, electrode geometry and surface quality are discussed and the implication it has on the observed schlieren kernel propagation. Careful preparation of the ignition source can lead to improved surface and shape for future flame measurements. It is also shown that the thermal energy dissipated into the gas during discharge can be captured experimentally through measurement of the spark voltage, current and plasma sheath voltage drop. With the experimentally captured thermal energy, a simple energy balance can be used to describe the size of the observed ignition kernel for radius larger than 0.3 mm (following breakdown). The measurement of the thermal energy is described utilizing two experimental methods to find the discharge voltage of the nonequilibrium region at the boundary of the electrodes. 
    more » « less