skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Simultaneous Schlieren and direct photography of detonation diffraction regimes in hydrogen mixtures
The diffraction behavior of gaseous detonations through an abrupt area change is investigated using hydrogen-oxygen-nitrogen mixtures at initial pressures of 0.5 and 1.0 bar. Critical conditions are noted and detailed discussion of the differing diffraction behaviors is undertaken, supported by simultaneous Schlieren and direct photography imaging as well as pressure-based velocity measurements. The experiments reveal four distinct diffraction regimes. The subcritical outcome is characterized by transmission failure with the leading shock front decoupling from the reaction zone, seen predominantly at lower oxygen concentrations. At intermediate oxygen levels, reinitiation from reflected shock waves is consistently observed. The critical regime exhibits both subcritical and supercritical outcomes, with detonation reinitiation at the diffraction dome's head leading to localized implosions for the supercritical case. Supercritical outcomes demonstrate successful detonation transmission, maintaining the shock front and reaction zone coupling. The effects of initial conditions on the probability of successful detonation transition and diffraction are highlighted. With the use of simultaneous direct photography and Schlieren imaging techniques, previously unseen details of the detonation and diffraction processes are recorded and explained.  more » « less
Award ID(s):
2324471
PAR ID:
10621254
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Combustion and Flame
Volume:
272
Issue:
C
ISSN:
0010-2180
Page Range / eLocation ID:
113845
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Flame speed measurements of stoichiometric (f=1) propane in an oxygen-argon oxidizer (21% O2, 79% Ar) were conducted behind reflected shock waves at unburned-gas temperatures from 800 K to nearly 1,200 K. As in previous shock-tube flame speed experiments, non-intrusive laser-induced-breakdown is used to ignite an expanding flame in the nominally quiescent gas following the reflected-shock passage. In addition to the end-wall emission imaging employed in previous works, a schlieren imaging diagnostic is employed utilizing side-wall optical ports. The high temporal and spatial resolutions of the schlieren diagnostic allow for measurements to be made of small, curvature-stabilized flames (r < 7 mm) with short measurement times (t < 600 ms). Direct comparison of simultaneous emission- and schlieren-based measurements illustrates that measurements performed with the two techniques agree at comparable flame radii. The comparison further shows the schlieren-based measurements do not show evidence of flame acceleration as is seen in the emission based measurements at larger flame radii and longer measurement times. Extrapolated, zero-stretch flame speeds are compared with those calculated using detailed and reduced reaction mechanisms, accounting for auto-ignition chemistry effects in accordance with the recent literature. 
    more » « less
  2. Detonation diffraction leads to either successful transmission of the detonation or quenching wherein the propagation mechanism is attenuated. The transmission behavior is governed by competing effects of energy release, curvature, and unsteadiness. There is a potentially unique critical diameter that will determine the diffraction outcome for every combustible mixture composition at each set of initial conditions. The critical diffraction diameter has been correlated to several detonation parameters to date; however, these correlations all have limitations. Analytical or quasi-analytical solutions to the diffraction problem, specifically those able to predict the critical diameter, are scarce. The present work develops several critical diameter models by uniting previous work on diffraction phenomena and the critical initiation energy problem. Curvature, decay rate, and energy-based models are established, and their critical diameter predictions are compared against a wide range of experimental critical diameter data. While detonation diffraction is a complex multifaceted phenomenon, a curvature-based one-dimensional model in this work is shown to accurately reproduce empirical critical diameter behavior at relatively low computational cost. 
    more » « less
  3. One of the fundamental mechanisms for detonation initiation is deflagration-to-detonation transition (DDT). This research experimentally explores the runaway condition for highly turbulent fast flames before DDT, which are characterized by extremely high turbulent flame speeds. Such fast turbulent flames experience increased effects of compressibility and may develop a runaway acceleration combined with a pressure buildup that leads to a turbulence-induced DDT (tDDT) mechanism that has been recently reported. The flame dynamics and the associated reacting flow field are characterized using simultaneous high-speed particle image velocimetry, OH*chemiluminescence, pressure measurements, and schlieren imaging. We study the flow-field conditions for runaway acceleration of fast turbulent flames and effects of compressibility on the evolution of these flames. The locally measured turbulent flame speed is found to be greater than that of a Chapman–Jouguet deflagration speed, which places the flame in the runaway transition regime that would eventually lead to a detonation. 
    more » « less
  4. Recent trends in decarbonizing efforts have brought ammonia to the forefront of research as a fuel for energy and transportation. But several previous studies have strongly suggested that ammonia has difficulties in ignition and heat release when used in a gaseous form due to its physical properties. On the other hand, working with liquid ammonia presents countless problems like difficulty in pressurizing, damage to elastomers and other metals, etc. In this study, pure liquid ammonia is injected into a CVCC (constant volume combustion chamber) using a hollow cone injector to understand the behavior of liquid ammonia when pressurized. Specifically, varying ambient temperature and pressure conditions encompassing the fuel’s subcritical to the supercritical regimes are studied as liquid ammonia tends to rapidly vaporize and flash-boil at pressures and temperatures above 50 bar and 315 K. High-speed shadowgraph and Schlieren imaging techniques are used to characterize the spray and understand the effects of varying conditions. Based on the formation of the central plume due to collapsing spray, many measurements like the plume ratio and penetration are studied to indicate the fuel's transition into the transcritical regime. A measurement of the flash-boiling spray plume ratios along with the spray penetration data give us a correlation of the environmental conditions to the spray transitioning into the supercritical regime. Interestingly, increasing the injection pressure from 75 bar to 150 bar shows 3 distinct regimes forming in the central spray plume penetration and the sprat plume ratio. This study has novel contribution to the development of direct injection of liquid ammonia spray for applications in high-power density engine systems. 
    more » « less
  5. The influence of additives on the detonation velocity of a polyethylene wax/RDX formulation was examined. Additives included species of various shock impedance: glass microballoons; glass microspheres; polymethyl methacrylate (PMMA) microspheres; thermally expandable microspheres (TEMs); and PMMA microencapsulated pentaerythritol tetranitrate (PETN). Performance of the insensitive explosive 2,4-dinitroanisole (DNAN) was enhanced by addition of PETN-either neat or encapsulated, but encapsulation did not increase the sensitivity of the formulation. The energy contribution of the encapsulated PETN to the detonation front of the insensitive explosive 2,4-dinitroanisole (DNAN) was also demonstrated. Present in 5 wt%, the encapsulated PETN allowed DNAN to sustain a reaction (5.36 km/s) at 13 mm, well below its critical diameter. 
    more » « less