skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 13, 2026

Title: A comprehensive review of computational diagnostic techniques for lymphedema
Abstract Lymphedema is localized swelling due to lymphatic system dysfunction, often affecting arms and legs due to fluid accumulation. It occurs in 20% to 94% of patients within 2–5 years after breast cancer treatment, with around 20% of women developing breast cancer-related lymphedema. This condition involves the accumulation of protein-rich fluid in interstitial spaces, leading to symptoms like swelling, pain, and reduced mobility that significantly impact quality of life. The early diagnosis of lymphedema helps mitigate the risk of deterioration and prevent its progression to more severe stages. Healthcare providers can reduce risks through exercise prescriptions and self-manual lymphatic drainage techniques. Lymphedema diagnosis currently relies on physical examinations and limb volume measurements, but challenges arise from a lack of standardized criteria and difficulties in detecting early stages. Recent advancements in computational imaging and decision support systems have improved diagnostic accuracy through enhanced image reconstruction and real-time data analysis. The aim of this comprehensive review is to provide an in-depth overview of the research landscape in computational diagnostic techniques for lymphedema. The computational techniques primarily include imaging-based, electrical, and machine learning (ML) approaches, which utilize advanced algorithms and data analysis. These modalities were compared based on various parameters to choose the most suitable techniques for their applications. Lymphedema detection faces challenges like subtle symptoms and inconsistent diagnostics. The research identifies bioimpedance spectroscopy (BIS), Kinect sensor and ML integration as the promising modalities for early lymphedema detection. BIS can effectively identify lymphedema as early as four months post-surgery with sensitivity of 44.1% and specificity of 95.4% in diagnosing lymphedema whereas ML and artificial neural network achieved an impressive average cross-validation accuracy of 93.75%, with sensitivity at 95.65% and specificity at 91.03%. ML and imaging can be integrated into clinical practice to enhance diagnostic accuracy and accessibility.  more » « less
Award ID(s):
2244091
PAR ID:
10621288
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP science
Date Published:
Journal Name:
Progress in Biomedical Engineering
Volume:
7
Issue:
2
ISSN:
2516-1091
Page Range / eLocation ID:
022002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Secondary lymphedema is a life‐long disorder characterized by chronic tissue swelling and inflammation that obstruct interstitial fluid circulation and immune cell trafficking. Regenerating lymphatic vasculatures using various strategies represents a promising treatment for lymphedema. Growth factor injection and gene delivery have been developed to stimulate lymphangiogenesis and augment interstitial fluid resorption. Using bioengineered materials as growth factor delivery vehicles allows for a more precisely targeted lymphangiogenic activation within the injured site. The implantation of prevascularized lymphatic tissue also promotesin situlymphatic capillary network formation. The engineering of larger scale lymphatic tissues, including lymphatic collecting vessels and lymph nodes constructed by bioengineered scaffolds or decellularized animal tissues, offers alternatives to reconnecting damaged lymphatic vessels and restoring lymph circulation. These approaches provide lymphatic vascular grafting materials to reimpose lymphatic continuity across the site of injury, without creating secondary injuries at donor sites. The present work reviews molecular mechanisms mediating lymphatic system development, approaches to promoting lymphatic network regeneration, and strategies for engineering lymphatic tissues, including lymphatic capillaries, collecting vessels, and nodes. Challenges of advanced translational applications are also discussed. 
    more » « less
  2. Early and accurate detection of breast cancer is a critical part of the strategy to reduce the morbidity and mortality associated with this common disease. While current guidelines recommend mammography for screening, the sensitivity and specificity of mammograms remains less than optimal, especially for patients with dense breast tissue. Thermography has been explored in the past as an alternative to mammography. Advances in IR cameras that are used to obtain thermal images of the breast as well as computational tools used to accurately model heat transfer within the breast have significantly increased the accuracy of thermography. The current work reviews the progress that has been made in using thermal imaging to detect breast cancer over the past three decades and identifies aspects that need further refinement for it to become a reliable tool to diagnose breast cancer. Recent advances and suggestions for future work in the field including using advanced simulation methods, inverse modeling, imaging protocols, and using artificial neural networks to better predict the location of the tumor are also presented. 
    more » « less
  3. Abstract Clinical diagnosis of Alzheimer’s disease (AD) is usually made after symptoms such as short-term memory loss are exhibited, which minimizes the intervention and treatment options. The existing screening techniques cannot distinguish between stable MCI (sMCI) cases (i.e., patients who do not convert to AD for at least three years) and progressive MCI (pMCI) cases (i.e., patients who convert to AD in three years or sooner). Delayed diagnosis of AD also disproportionately affects underrepresented and socioeconomically disadvantaged populations. The significant positive impact of an early diagnosis solution for AD across diverse ethno-racial and demographic groups is well-known and recognized. While advancements in high-throughput technologies have enabled the generation of vast amounts of multimodal clinical, and neuroimaging datasets related to AD, most methods utilizing these data sets for diagnostic purposes have not found their way in clinical settings. To better understand the landscape, we surveyed the major preprocessing, data management, traditional machine-learning (ML), and deep learning (DL) techniques used for diagnosing AD using neuroimaging data such as structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Once we had a good understanding of the methods available, we conducted a study to assess the reproducibility and generalizability of open-source ML models. Our evaluation shows that existing models show reduced generalizability when different cohorts of the data modality are used while controlling other computational factors. The paper concludes with a discussion of major challenges that plague ML models for AD diagnosis and biomarker discovery. 
    more » « less
  4. Among the different types of skin cancer, melanoma is considered to be the deadliest and is difficult to treat at advanced stages. Detection of melanoma at earlier stages can lead to reduced mortality rates. Desktop-based computer-aided systems have been developed to assist dermatologists with early diagnosis. However, there is significant interest in developing portable, at-home melanoma diagnostic systems which can assess the risk of cancerous skin lesions. Here, we present a smartphone application that combines image capture capabilities with preprocessing and segmentation to extract the Asymmetry, Border irregularity, Color variegation, and Diameter (ABCD) features of a skin lesion. Using the feature sets, classification of malignancy is achieved through support vector machine classifiers. By using adaptive algorithms in the individual data-processing stages, our approach is made computationally light, user friendly, and reliable in discriminating melanoma cases from benign ones. Images of skin lesions are either captured with the smartphone camera or imported from public datasets. The entire process from image capture to classification runs on an Android smartphone equipped with a detachable 10x lens, and processes an image in less than a second. The overall performance metrics are evaluated on a public database of 200 images with Synthetic Minority Over-sampling Technique (SMOTE) (80% sensitivity, 90% specificity, 88% accuracy, and 0.85 area under curve (AUC)) and without SMOTE (55% sensitivity, 95% specificity, 90% accuracy, and 0.75 AUC). The evaluated performance metrics and computation times are comparable or better than previous methods. This all-inclusive smartphone application is designed to be easy-to-download and easy-to-navigate for the end user, which is imperative for the eventual democratization of such medical diagnostic systems. 
    more » « less
  5. Known genes in the breast cancer study literature could not be confirmed whether they are vital to breast cancer formations due to lack of convincing accuracy, although they may be biologically directly related to breast cancer based on present biological knowledge. It is hoped vital genes can be identified with the highest possible accuracy, for example, 100% accuracy and convincing causal patterns beyond what has been known in breast cancer. One hope is that finding gene-gene interaction signatures and functional effects may solve the puzzle. This research uses a recently developed competing linear factor analysis method in differentially expressed gene detection to advance the study of breast cancer formation. Surprisingly, 3 genes are detected to be differentially expressed in TNBC and non-TNBC (Her2, Luminal A, Luminal B) samples with 100% sensitivity and 100% specificity in 1 study of triple-negative breast cancers (TNBC, with 54 675 genes and 265 samples). These 3 genes show a clear signature pattern of how TNBC patients can be grouped. For another TNBC study (with 54 673 genes and 66 samples), 4 genes bring the same accuracy of 100% sensitivity and 100% specificity. Four genes are found to have the same accuracy of 100% sensitivity and 100% specificity in 1 breast cancer study (with 54 675 genes and 121 samples), and the same 4 genes bring an accuracy of 100% sensitivity and 96.5% specificity in the fourth breast cancer study (with 60 483 genes and 1217 samples). These results show the 4-gene-based classifiers are robust and accurate. The detected genes naturally classify patients into subtypes, for example, 7 subtypes. These findings demonstrate the clearest gene-gene interaction patterns and functional effects with the smallest numbers of genes and the highest accuracy compared with findings reported in the literature. The 4 genes are considered to be essential for breast cancer studies and practice. They can provide focused, targeted researches and precision medicine for each subtype of breast cancer. New breast cancer disease types may be detected using the classified subtypes, and hence new effective therapies can be developed. 
    more » « less