skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intraspecific Functional Trait Variation and Coordination in Schizachyrium scoparium
Plant functional traits are vital tools in ecological restoration and biodiversity conservation. While functional traits and functional diversity are increasingly being used to inform restoration efforts, challenges remain in the characterization of trait variation in many systems, including within‐species. Likewise, understanding axes of trait variation describing trade‐offs in plant function is important for trait‐based restoration frameworks, yet the degree of coordination between above‐ground functional traits and their below‐ ground counterparts is often unknown. Here, we investigate intraspecific trait variation among five populations ofSchizachyrium scoparium(little bluestem), a species commonly used for restoration, from different habitat types across a gradient from southern Wisconsin to Northern Illinois. We asked (1) how regional populations ofS. scopariumdiffer in their functional traits, (2) how functional trait variation inS. scopariumis structured among and within populations, and (3) how above‐ and below‐ground functional traits ofS. scopariumcoordinate and describe axes of functional trade‐offs. We found that populations differed in multivariate trait space, but evidence for differences in individual traits among populations was mixed. Trait relationships with habitat types were idiosyncratic and often misaligned with expectations of plant economic spectra. Variation within populations was as high, or higher, than between populations across traits. We found evidence for weak coordination in several trait pairs, including two above‐ and below‐ground trait combinations, while others appeared to be uncoordinated. Our findings support previous research that trait differentiation can occur at multiple scales, both between and within populations. Extensive within‐population trait variability could be leveraged in trait‐based restoration frameworks targeting intraspecific functional diversity. The lack of strong signals of coordination between above‐ and below‐ground functional traits suggest that sourcing decisions meant to match below‐ground functional traits to recipient restored communities should rely on direct measurement of root traits associated with desired functions rather than above‐ground proxies.  more » « less
Award ID(s):
2149888
PAR ID:
10621353
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Medeiros, Juliana (Ed.)
    Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons. 
    more » « less
  2. Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles. 
    more » « less
  3. ABSTRACT Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human‐mediated selection pressures.Lolium multiflorumis a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome‐scale genome forL. multiflorumand elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome‐wide association studies, genetic divergence analysis and transcriptome analyses from paraquat‐resistant and ‐susceptibleL. multiflorumplants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given thatL. multiflorumis a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture. 
    more » « less
  4. Societal Impact StatementGroundcherry (Physalis grisea) is a plant species grown for its flavorful fruit. The fruit drops from the plant, hence the common name groundcherry. This makes harvest cumbersome and puts the fruit at risk for carrying soil‐borne pathogens, therefore making them unsellable. Furthermore, insects often damage the plants, reducing yield. Advances in gene editing offer promise for addressing these issues and aiding home gardeners and farmers. Improvement will expand access to this nutritious fruit, rich in potassium, vitamin C, and antioxidants. Additionally, studies of its biology could serve as a model for improving other fruiting plants, particularly underutilized species. SummaryP. griseais an underutilized, semidomesticated fruit crop with rising agronomic value. Several resources have been developed for its use in fundamental biological research, including a plant transformation system and a high‐quality reference genome. Already,P. griseahas been used as a model to investigate biological phenomena including inflated calyx syndrome and gene compensation.P. griseahas also been used to demonstrate the potential of fast‐tracking domestication trait improvement through approaches such as CRISPR/Cas9 gene editing. This work has led to thePhysalisImprovement Project, which relies on reverse genetics to understand the mechanisms that underlie fruit abscission and plant–herbivore interactions to guide approaches for improvement of undesirable characteristics. CRISPR/Cas9 gene editing has been used to targetP. griseagenes that are suspected to act in fruit abscission, particularly orthologs of those that are reported in tomato abscission zone development. A similar approach is being taken to targetP. griseagenes involved in the withanolide biosynthetic pathway to determine the impact of withanolides on plant–herbivore interactions. Results from these research projects will lead to a greater understanding of important biological processes and will also generate knowledge needed to develop cultivars with reduced fruit drop and increased resistance to insect herbivory. 
    more » « less
  5. ABSTRACT Herbivorous insects tolerate chemical and metabolic variation in their host plant diet by modulating physiological traits. Insect immune response is one such trait that plays a crucial role in maintaining fitness but can be heavily influenced by variation in host plant quality. An important question is how the use of different host plants affects the ability of herbivorous insects to resist viral pathogens. Furthermore, the transcriptional changes associated with this interaction of diet and viral pathogens remain understudied. The Melissa blue butterfly (Lycaeides melissa) has colonised the exotic legumeMedicago sativaas a larval host within the past 200 years. We used this system to study the interplay between the effects of host plant variation and viral infection on physiological responses and global gene expression. We measured immune strength in response to infection by the Junonia coenia densovirus (JcDV) in two ways: (1) direct measurement of phenoloxidase activity and melanisation, and (2) transcriptional sequencing of individuals exposed to different viral and host plant treatments. Our results demonstrate that viral infection caused total phenoloxidase (total PO) to increase and viral infection and host plant interactively affected total PO such that for infected larvae, total PO was significantly higher for larvae consuming the native host plant. Additionally,L. melissalarvae differentially expressed several hundred genes in response to host plant treatment, but with minimal changes in gene expression in response to viral infection. Not only immune genes, but several detoxification, transporter, and oxidase genes were differentially expressed in response to host plant treatments. These results demonstrate that in herbivorous insects, consumption of a novel host plant can alter both physiological and transcriptional responses relevant to viral infection, emphasising the importance of considering immune and detoxification mechanisms into models of evolution of host range in herbivorous insects. 
    more » « less