The sliding speed of glaciers depends strongly on the water pressure at the ice‐sediment interface, which is controlled by the efficiency of water transport through a subglacial hydrological system. The least efficient component of the system consists of “distributed” flow everywhere beneath the ice, whereas the “channelized” drainage through large, thermally eroded conduits is more efficient. To understand the conditions under which the subglacial network channelizes, we perform a linear stability analysis of distributed flow, considering competition between thermal erosion and viscous ice collapse. The calculated growth rate gives a stability criterion, describing the minimum subglacial meltwater flux needed for channels to form, but also indicates the tendency to generate infinitely narrow channels in existing models. We demonstrate the need to include lateral heat diffusion when modeling melt incision to resolve channel widths, which allows continuum models to recover Röthlisberger channel behavior. We also show that low numerical resolution can suppress channel formation and lead to overestimates of water pressure. Our derived channelization criterion can be used to predict the character of subglacial hydrological systems without recourse to numerical simulations, with practical implications for understanding changes in ice velocity due to changes in surface melt runoff.
more »
« less
Subglacial hydrology insights from eskers developed atop soft beds of the Laurentide ice sheet
Glacial landforms provide a valuable record from which to study the history and dynamics of past ice sheets. Eskers record paleo subglacial hydrologic and sediment transport conditions because they are composed of sediment deposited by water flowing through subglacial channels. Despite decades of study, there is still debate about their formation mechanisms and little investigation of the differences between eskers formed over soft and hard beds. To address this complexity, we analysed eskers formed over soft beds along the southern margin of the Laurentide Ice Sheet (LIS) in the Lake Superior region. This included developing a new method to calculate the basal effective pressure gradient during esker formation along the subglacial channel using grain size estimates from a 20 m tall esker exposure. The morphometry and distribution of eskers were mapped with GIS to quantify their sinuosity and lateral spacing, and to compare those to the underlying bedrock elevation and sediment thickness. Lateral spacing decreased over time as the ice margin retreated, suggesting that melt rates increased during the LIS deglaciation. Furthermore, the relation between esker distribution and sediment thickness showed that eskers formed preferentially over thinner layers of sediment, irrespective of whether erosion occurred before their formation. The sedimentology of the Cable Esker exhibits a non‐monotonic pattern in channel boundary shear stress ranging from 10 to 300 Pa, alongside a basal effective pressure gradient fluctuating between −9 to −70 Pa m−1. Negative basal effective pressure gradients are consistent with esker formation in channels close to the glacier terminus, which suggests lower water pressure than normally assumed. This, combined with dynamic water level fluctuations within the esker channel, supports the theory of the formation of eskers near the ice margin.
more »
« less
- Award ID(s):
- 2218463
- PAR ID:
- 10621356
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 50
- Issue:
- 1
- ISSN:
- 0197-9337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Ice-sheet models used to predict sea-level rise often neglect subglacial hydrology. However, theory and observations suggest that ice flow and subglacial water flow are bidirectionally coupled: ice geometry affects hydraulic potential, hydraulic potential modulates basal shear stress via the basal water pressure, and ice flow advects the subglacial drainage system. This coupling could impact rates of ice mass change but remains poorly understood. We develop a coupled ice–subglacial-hydrology model to investigate the effects of coupling on the long-term evolution of marine-terminating ice sheets. We combine a one-dimensional channelized subglacial hydrology model with a depth-integrated marine-ice-sheet model, incorporating each component of the coupling listed above, yielding a set of differential equations that we solve using a finite-difference, implicit time-stepping approach. We conduct a series of experiments with this model, using either bidirectional or unidirectional coupling. These experiments generate profiles of channel cross-sectional area, channel flow rate, channel effective pressure, ice thickness, and ice velocity. We discuss how the profiles shape one another, resulting in the effective pressure reaching a local maximum in a region near the grounding line. We also describe the impact of bidirectional coupling on the transient retreat of ice sheets through a comparison of our coupled model with ice-flow models that have imposed static basal conditions. We find that including coupled subglacial hydrology leads to grounding-line retreat that is virtually absent when static basal conditions are assumed. This work highlights the role time-evolving subglacial drainage may have in ice-sheet change and informs efforts to include it in ice-sheet models. This work also supplies a physical basis for a commonly used parameterization which assumes that the subglacial water pressure is set by the bed's depth beneath the sea surface.more » « less
-
Ice-infiltrated sediment, or frozen fringe, is responsible for phenomena such as frost heave, ice lenses and metres of debris-rich ice under glaciers. Understanding frozen fringes is important as frost heave is responsible for damaging infrastructure at high latitudes and sediment freeze-on at the base of glaciers can modulate subglacial friction, influencing the rate of global sea level rise. Here we describe the thermomechanics of liquid water flow and freezing in ice-saturated sediments, focusing on the conditions relevant for subglacial environments. The force balance that governs the frozen fringe thickness depends on the weight of the overlying material, the thermomolecular force between ice and sediments across liquid premelted films and the water pressure required by Darcy flow. We combine this mechanical model with an enthalpy method that conserves energy across phase change interfaces on a fixed computational grid. The force balance and enthalpy model together determine the evolution of the frozen fringe thickness and our simulations predict frost heave rates and ice lens spacing. Our model accounts for premelting at ice–sediment contacts, partial ice saturation of the pore space, water flow through the fringe, the thermodynamics of the ice–water–sediment interface and vertical force balance. We explicitly account for the formation of ice lenses, regions of pure ice that cleave the fringe at the depth where the interparticle force vanishes. Our model results allow us to predict the thickness of a frozen fringe and the spacing of ice lenses in subaerial and subglacial sediments.more » « less
-
Basal conditions that facilitate fast ice flow are still poorly understood and their parameterization in ice‐flow models results in high uncertainties in ice‐flow and consequent sea‐level rise projections. Direct observations of basal conditions beneath modern ice streams are limited due to the inaccessibility of the bed. One approach to understanding basal conditions is through investigating the basal landscape of ice streams and glaciers, which has been shaped by ice flow over the underlying substrate. Bedform variation together with observations of ice‐flow properties can reveal glaciological and geological conditions present during bedform formation. Here we map the subglacial landscape and identify basal conditions of Rutford Ice Stream (West Antarctica) using different visualization techniques on novel high‐resolution 3D radar data. This novel approach highlights small‐scale features and details of bedforms that would otherwise be invisible in conventional radar grids. Our data reveal bedforms of <300 m in length, surrounded by bedforms of >10 km in length. We correlate variations in bedform dimensions and spacing to different glaciological and geological factors. We find no significant correlation between local (<3 × 3 km) variations in bedform dimensions and variations in ice‐flow speed and (surface or basal) topography. We present a new model of subglacial sediment discharge, which proposes that variations in bedform dimensions are primarily driven by spatial variation in sediment properties and effective pressure. This work highlights the small‐scale spatial variability of basal conditions and its implications for basal slip. This is critical for more reliable parameterization of basal friction of ice streams in numerical models.more » « less
-
Abstract Beneath Antarctica’s ice sheets, a little-observed network of liquid water connects vast landscapes and contributes to the motion of the overriding ice. When this subglacial water reaches the ocean cavity beneath ice shelves, it mixes with seawater, amplifying melt and in places forming deep channels in the base of the ice. Here we present observations from a hot-water-drilled borehole documenting subglacial water entering the ocean cavity at the grounding zone of Kamb Ice Stream and the Ross Ice Shelf. Our observations show that melt has removed approximately a third of the ice thickness, yet measurements reveal low rates of subglacial discharge in a turbid plume. Sediment cored from the channel floor shows larger discharge events occur and episodically deposit material from distinct geological domains. We quantify subglacial discharge and link our observations to the catchment upstream. We conclude that discrete discharge events are likely to dominate channel melt and sediment transport and result in the extensive ice-shelf features downstream of Kamb Ice Stream.more » « less
An official website of the United States government

