skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Embedding Empirical Distributions for Computing Optimal Transport Maps
Distributional data have become increasingly prominent in modern signal processing, highlighting the necessity of computing optimal transport (OT) maps across multiple probability distributions. Nevertheless, recent studies on neural OT methods predominantly focused on the efficient computation of a single map between two distributions. To address this challenge, we introduce a novel approach to learning transport maps for new empirical distributions. Specifically, we employ the transformer architecture to produce embeddings from distributional data of varying length; these embeddings are then fed into a hypernetwork to generate neural OT maps. Various numerical experiments were conducted to validate the embeddings and the generated OT maps.  more » « less
Award ID(s):
2347760
PAR ID:
10621411
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE International Symposium on Information Theory (ISIT)
Date Published:
Format(s):
Medium: X
Location:
Ann Arbor (Michigan), USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of optimal transport maps. The autoregressive transport models that we introduce here are based on regressing optimal transport maps on each other, where predictors can be transport maps from an overall barycenter to a current distribution or transport maps between past consecutive distributions of the distributional time series. Autoregressive transport models and their associated distributional regression models specify the link between predictor and response transport maps by moving along geodesics in Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random functions. Journal of Applied Probability 41, 425–436)], using properties of iterated random functions. We also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In addition to simulations, the proposed models are illustrated with distributional time series of house prices across U.S. counties and annual summer temperature distributions. 
    more » « less
  2. Despite the recent popularity of neural network-based solvers for optimal transport (OT), there is no standard quantitative way to evaluate their performance. In this paper, we address this issue for quadratic-cost transport---specifically, computation of the Wasserstein-2 distance, a commonly-used formulation of optimal transport in machine learning. To overcome the challenge of computing ground truth transport maps between continuous measures needed to assess these solvers, we use input-convex neural networks (ICNN) to construct pairs of measures whose ground truth OT maps can be obtained analytically. This strategy yields pairs of continuous benchmark measures in high-dimensional spaces such as spaces of images. We thoroughly evaluate existing optimal transport solvers using these benchmark measures. Even though these solvers perform well in downstream tasks, many do not faithfully recover optimal transport maps. To investigate the cause of this discrepancy, we further test the solvers in a setting of image generation. Our study reveals crucial limitations of existing solvers and shows that increased OT accuracy does not necessarily correlate to better results downstream. 
    more » « less
  3. Optimal transport (OT) offers a versatile framework to compare complex data distributions in a geometrically meaningful way. Traditional methods for computing the Wasserstein distance and geodesic between probability measures require mesh-specific domain discretization and suffer from the curse-of-dimensionality. We present GeONet, a mesh-invariant deep neural operator network that learns the non-linear mapping from the input pair of initial and terminal distributions to the Wasserstein geodesic connecting the two endpoint distributions. In the offline training stage, GeONet learns the saddle point optimality conditions for the dynamic formulation of the OT problem in the primal and dual spaces that are characterized by a coupled PDE system. The subsequent inference stage is instantaneous and can be deployed for real-time predictions in the online learning setting. We demonstrate that GeONet achieves comparable testing accuracy to the standard OT solvers on simulation examples and the MNIST dataset with considerably reduced inference-stage computational cost by orders of magnitude. 
    more » « less
  4. The unsupervised task of aligning two or more distributions in a shared latent space has many applications including fair representations, batch effect mitigation, and unsupervised domain adaptation. Existing flow-based approaches estimate multiple flows independently, which is equivalent to learning multiple full generative models. Other approaches require adversarial learning, which can be computationally expensive and challenging to optimize. Thus, we aim to jointly align multiple distributions while avoiding adversarial learning. Inspired by efficient alignment algorithms from optimal transport (OT) theory for univariate distributions, we develop a simple iterative method to build deep and expressive flows. Our method decouples each iteration into two subproblems: 1) form a variational approximation of a distribution divergence and 2) minimize this variational approximation via closed-form invertible alignment maps based on known OT results. Our empirical results give evidence that this iterative algorithm achieves competitive distribution alignment at low computational cost while being able to naturally handle more than two distributions. 
    more » « less
  5. The unsupervised task of aligning two or more distributions in a shared latent space has many applications including fair representations, batch effect mitigation, and unsupervised domain adaptation. Existing flow-based approaches estimate multiple flows independently, which is equivalent to learning multiple full generative models. Other approaches require adversarial learning, which can be computationally expensive and challenging to optimize. Thus, we aim to jointly align multiple distributions while avoiding adversarial learning. Inspired by efficient alignment algorithms from optimal transport (OT) theory for univariate distributions, we develop a simple iterative method to build deep and expressive flows. Our method decouples each iteration into two subproblems: 1) form a variational approximation of a distribution divergence and 2) minimize this variational approximation via closed-form invertible alignment maps based on known OT results. Our empirical results give evidence that this iterative algorithm achieves competitive distribution alignment at low computational cost while being able to naturally handle more than two distributions. 
    more » « less