Abstract Histone post-translational modifications (PTMs) participate in the dynamic regulation of chromatin structure and function, through their chemical nature and specific location within the histone sequence. Alternative analytical approaches for histone PTM studies are required to facilitate the differentiation between ubiquitously present isomers and the detection of low-abundance PTMs Here, we report a high-sensitivity bottom-up method based on nano-liquid chromatography (nLC), trapped ion mobility spectrometry (TIMS), data-dependent acquisition (DDA), parallel accumulation-serial fragmentation (PASEF), and high-resolution time-of-flight tandem mass spectrometry (ToF-MS/MS) for the analysis of histone PTMs. This method was tested in a threatened coral species, the staghorn coral Acropora cervicornis, during an episode of acute thermal stress. The obtained results allowed for the identification of PTM changes in core histones involved in the coral’s heat response. Compared to traditional LC-MS/MS approaches, the incorporation of TIMS and ddaPASEF MS/MS resulted in a highly specific and sensitive method with a wide dynamic range (6 orders of magnitude). This depth of analysis allows for the simultaneous measurement of low-abundance PTM signatures relative to the unmodified form. An added advantage is the ability to mass- and mobility-isolate prior to peptide sequencing, resulting in higher confidence identification of epigenetic markers associated with heat stress in corals (e.g. increased H4 4–17 with 2ac and 3ac, and decreases in H4 4–17 K12ac, K16ac, H4 K20me2, and H2A K5ac, K7ac, K9ac, K12ac, K14ac, and K74ac).
more »
« less
Direct histone proteoform profiling of the unannotated, endangered coral Acropora cervicornis
Abstract Epigenetic modifications directly regulate the patterns of gene expression by altering DNA accessibility and chromatin structure. A knowledge gap is presented by the need to directly measure these modifications, especially for unannotated organisms with unknown primary histone sequences. In the present work, we developed and applied a novel workflow for identifying and annotating histone proteoforms directly from mass spectrometry-based measurements for the endangered Caribbean coral Acropora cervicornis. Combining high-accuracy de novo top-down and bottom-up analysis based on tandem liquid chromatography, trapped ion mobility spectrometry, non-ergodic electron-based fragmentation, and high-resolution mass spectrometry, near complete primary sequence (up to 99%) and over 86 post-translational modification annotations were obtained from pull-down histone fractions. In the absence of reliable genome annotations, H2A, H2B, and H4 histone sequences and the annotation of the post-translational modifications of the stressed A. cervicornis coral allow for a better understanding of chromatin remodeling and new strategies for targeting intervention and restoration of endangered reef corals.
more »
« less
- Award ID(s):
- 1921402
- PAR ID:
- 10621571
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 53
- Issue:
- 14
- ISSN:
- 0305-1048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundHistone post-translational modifications (PTMs) play an important role in our system by regulating the structure of chromatin and therefore contribute to the regulation of gene and protein expression. Irregularities in histone PTMs can lead to a variety of different diseases including various forms of cancer. Histone modifications are analyzed using high resolution mass spectrometry, which generate large amounts of data that requires sophisticated bioinformatics tools for analysis and visualization. PTMViz is designed for downstream differential abundance analysis and visualization of both protein and/or histone modifications. ResultsPTMViz provides users with data tables and visualization plots of significantly differentiated proteins and histone PTMs between two sample groups. All the data is packaged into interactive data tables and graphs using the Shiny platform to help the user explore the results in a fast and efficient manner to assess if changes in the system are due to protein abundance changes or epigenetic changes. In the example data provided, we identified several proteins differentially regulated in the dopaminergic pathway between mice treated with methamphetamine compared to a saline control. We also identified histone post-translational modifications including histone H3K9me, H3K27me3, H4K16ac, and that were regulated due to drug exposure. ConclusionsHistone modifications play an integral role in the regulation of gene expression. PTMViz provides an interactive platform for analyzing proteins and histone post-translational modifications from mass spectrometry data in order to quickly identify differentially expressed proteins and PTMs.more » « less
-
Abstract Mass spectrometry (MS)‐based top‐down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post‐translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high‐resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS‐PAGE‐based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI‐MS) with capillary zone electrophoresis (CZE)‐MS/MS for high‐resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS‐PAGE gel and follow‐up cleanup as well as CZE‐MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high‐resolution separation and characterization of histone proteoforms. SDS‐PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high‐resolution separations of SDS‐PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.more » « less
-
Vogel, K (Ed.)Abstract Coral species in the genus Acropora are key ecological components of coral reefs worldwide and represent the most diverse genus of scleractinian corals. While key species of Indo-Pacific Acropora have annotated genomes, no annotated genome has been published for either of the two species of Caribbean Acropora. Here we present the first fully annotated genome of the endangered Caribbean staghorn coral, Acropora cervicornis. We assembled and annotated this genome using high-fidelity nanopore long-read sequencing with gene annotations validated with mRNA sequencing. The assembled genome size is 318 Mb, with 28,059 validated genes. Comparative genomic analyses with other Acropora revealed unique features in A. cervicornis, including contractions in immune pathways and expansions in signaling pathways. Phylogenetic analysis confirms previous findings showing that A. cervicornis diverged from Indo-Pacific relatives around 41 million years ago, with the closure of the western Tethys Sea, prior to the primary radiation of Indo-Pacific Acropora. This new A. cervicornis genome enriches our understanding of the speciose Acropora and addresses evolutionary inquiries concerning speciation and hybridization in this diverse clade.more » « less
-
Abstract Histone post‐translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP‐seq) is a powerful tool to profile histone PTMsin vivo. This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies. While mass spectrometry (MS)–based proteomic approaches to quantitatively measure histone PTMs have been developed in mammals and several other model organisms, such methods are currently not readily available in plants. One major challenge for the implementation of such methods in plants has been the difficulty in isolating sufficient amounts of pure, high‐quality histones, a step rendered difficult by the presence of the cell wall. Here, we developed a high‐yielding histone extraction and purification method optimized forArabidopsis thalianathat can be used to obtain high‐quality histones for MS. In contrast to other methods used in plants, this approach is relatively simple, and does not require membranes or additional specialized steps, such as gel excision or chromatography, to extract highly purified histones. We also describe methods for producing MS‐ready histone peptides through chemical labeling and digestion. Finally, we describe an optimized method to quantify and analyze the resulting histone PTM data using a modified version of EpiProfile 2.0 for Arabidopsis. In all, the workflow described here can be used to measure changes to histone PTMs resulting from various treatments, stresses, and time courses, as well as in different mutant lines. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Nuclear isolation and histone acid extraction Basic Protocol 2: Peptide labeling, digestion, and desalting Basic Protocol 3: Histone HPLC‐MS/MS and data analysismore » « less
An official website of the United States government
