skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: A Mathematical Exploration of the Effects of Ischemia-Reperfusion Injury After a Myocardial Infarction
Introduction: After myocardial infarction (MI), the heart undergoes necrosis, inflammation, scar formation, and remodeling. While restoring blood flow is crucial, it can cause ischemia-reperfusion (IR) injury, driven by reactive oxygen species (ROSs), which exacerbate cell death and tissue damage. This study introduces a mathematical model capturing key post-MI dynamics, including inflammatory responses, IR injury, cardiac remodeling, and stem cell therapy. The model uses nonlinear ordinary differential equations to simulate these processes under varying conditions, offering a predictive tool to understand MI pathophysiology better and optimize treatments. Methods: After myocardial infarction (MI), left ventricular remodeling progresses through three distinct yet interconnected phases. The first phase captures the immediate dynamics following MI, prior to any medical intervention. This stage is mathematically modeled using the system of ordinary differential equations: The second and third stages of the remodeling process account for the system dynamics of medical treatments, including oxygen restoration and subsequent stem cell injection at the injury site. Results: We simulate heart tissue and immune cell dynamics over 30 days for mild and severe MI using the novel mathematical model under medical treatment. The treatment involves no intervention until 2 h post-MI, followed by oxygen restoration and stem cell injection at day 7, which is shown experimentallyand numerically to be optimal. The simulation incorporates a baseline ROS threshold (Rc) where subcritical ROS levels do not cause cell damage. Conclusion: This study presents a novel mathematical model that extends a previously published framework by incorporating three clinically relevant parameters: oxygen restoration rate (ω), patient risk factors (γ), and neutrophil recruitment profile (δ). The model accounts for post-MI inflammatory dynamics, ROS-mediated ischemia-reperfusion (IR) injury, cardiac remodeling, and stem cell therapy. The model’s sensitivity highlights critical clinical insights: while oxygen restoration is vital, excessive rates may exacerbate ROS-driven IR injury. Additionally, heightened patient risk factors (e.g., smoking, obesity) and immunodeficiency significantly impact tissue damage and recovery. This predictive tool offers valuable insights into MI pathology and aids in optimizing treatment strategies to mitigate IR injury and improve post-MI outcomes.  more » « less
Award ID(s):
2230790
PAR ID:
10621600
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Bioengineering
Volume:
12
Issue:
2
ISSN:
2306-5354
Page Range / eLocation ID:
177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies. 
    more » « less
  2. Cardiovascular diseases, including myocardial infarction (MI), persist as the leading cause of mortality and morbidity worldwide. The limited regenerative capacity of the myocardium presents significant challenges specifically for the treatment of MI and, subsequently, heart failure (HF). Traditional therapeutic approaches mainly rely on limiting the induced damage or the stress on the remaining viable myocardium through pharmacological regulation of remodeling mechanisms, rather than replacement or regeneration of the injured tissue. The emerging alternative regenerative medicine-based approaches have focused on restoring the damaged myocardial tissue with newly engineered functional and bioinspired tissue units. Cardiac regenerative medicine approaches can be broadly categorized into three groups: cell-based therapies, scaffold-based cardiac tissue engineering, and scaffold-free cardiac tissue engineering. Despite significant advancements, however, the clinical translation of these approaches has been critically hindered by two key obstacles for successful structural and functional replacement of the damaged myocardium, namely: poor engraftment of engineered tissue into the damaged cardiac muscle and weak electromechanical coupling of transplanted cells with the native tissue. To that end, the integration of micro- and nanoscale technologies along with recent advancements in stem cell technologies have opened new avenues for engineering of structurally mature and highly functional scaffold-based (SB-CMTs) and scaffold-free cardiac microtissues (SF-CMTs) with enhanced cellular organization and electromechanical coupling for the treatment of MI and HF. In this review article, we will present the state-of-the-art approaches and recent advancements in the engineering of SF-CMTs for myocardial repair. 
    more » « less
  3. Biological models for cardiac regeneration and remodeling, along with the effects of cytokines or chemokines during the therapy with mesenchymal stem cells after a myocardial infarction, are of crucial importance for understanding the complex underlying mechanisms. This paper presents a mathematical model composed of three coupled partial differential equations that describes the dynamics of stem cells, nutrients and chemokines, highlighting the fundamental role of the chemokines during the myocardial tissue regeneration process. The system is solved numerically using mimetic difference operators and the MOLE library for MATLAB. The results show the tissue regeneration process in the necrotic part closest to the cell implantation area. 
    more » « less
  4. Abstract Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies. Graphical Abstract 
    more » « less
  5. Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after blood and oxygen are restored to ischemic or hypoxic tissue, is a significant factor within the mortality rates of heart disease and stroke patients. At the cellular level, the return of oxygen triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (mCa2+) overload, which both contribute to cell death. Despite the widespread occurrence of IRI in different pathological conditions, there are currently no clinically approved therapeutic agents for its management. In this Perspective, we will briefly discuss the current therapeutic options for IRI and then describe in great detail the potential role and arising applications of metal-containing coordination and organometallic complexes for treating this condition. This Perspective categorizes these metal compounds based on their mechanisms of action, which include their use as delivery agents for gasotransmitters, inhibitors of mCa2+ uptake, and catalysts for the decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry approaches to manage IRI are discussed. 
    more » « less