skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Graphene-driven correlated electronic states in one dimensional defects within WS2
Abstract Tomonaga-Luttinger liquid (TLL) behavior in one-dimensional systems has been predicted and shown to occur at semiconductor-to-metal transitions within two-dimensional materials. Reports of one-dimensional defects hosting a Fermi liquid or a TLL have suggested a dependence on the underlying substrate, however, unveiling the physical details of electronic contributions from the substrate require cross-correlative investigation. Here, we study TLL formation within defectively engineered WS2atop graphene, where band structure and the atomic environment is visualized with nano angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy, and non-contact atomic force microscopy. Correlations between the local density of states and electronic band dispersion elucidated the electron transfer from graphene into a TLL hosted by one-dimensional metal (1DM) defects. It appears that the vertical heterostructure with graphene and the induced charge transfer from graphene into the 1DM is critical for the formation of a TLL.  more » « less
Award ID(s):
2002651
PAR ID:
10621605
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tunability of interfacial effects between two-dimensional (2D) crystals is crucial not only for understanding the intrinsic properties of each system, but also for designing electronic devices based on ultra-thin heterostructures. A prerequisite of such heterostructure engineering is the availability of 2D crystals with different degrees of interfacial interactions. In this work, we report a controlled epitaxial growth of monolayer TaSe2with different structural phases, 1Hand 1 T, on a bilayer graphene (BLG) substrate using molecular beam epitaxy, and its impact on the electronic properties of the heterostructures using angle-resolved photoemission spectroscopy. 1H-TaSe2exhibits significant charge transfer and band hybridization at the interface, whereas 1 T-TaSe2shows weak interactions with the substrate. The distinct interfacial interactions are attributed to the dual effects from the differences of the work functions as well as the relative interlayer distance between TaSe2films and BLG substrate. The method demonstrated here provides a viable route towards interface engineering in a variety of transition-metal dichalcogenides that can be applied to future nano-devices with designed electronic properties. 
    more » « less
  2. Abstract Monolayer graphene growth on liquid copper (Cu) has attracted attention due to advantages of a flat/smooth catalytic growth surface, high synthesis temperature (>1080 °C) as well as the possibility of forming graphene domains that are mobile on the liquid Cu with potential to minimize grain boundary defects and self-assemble into a continuous monolayer film. However, the quality of monolayer graphene grown on liquid copper and its suitability for size-selective ionic/molecular membrane separations has not been evaluated/studied. Here, we probe the quality of monolayer graphene grown on liquid Cu (via a metallurgical process, HSMG®) using Scanning Electron Microscope (SEM), High-resolution transmission electron microscope (HR-TEM), Raman spectroscopy and report on a facile approach to assess intrinsic sub-nanometer to nanometer-scale defects over centimeter-scale areas. We demonstrate high transfer yields of monolayer graphene (>93% coverage) from the growth substrate to polyimide track etched membrane (PITEM, pore diameter ∼200 nm) supports to form centimeter-scale atomically thin membranes. Next, we use pressure-driven transport of ethanol to probe defects > 60 nm and diffusion-driven transport of analytes (KCl ∼0.66 nm, L-Tryptophan ∼0.7–0.9 nm, Vitamin B12 ∼1–1.5 nm and Lysozyme ∼3.8–4 nm) to probe nanoscale and sub-nanometer scale defects. Diffusive transport confirms the presence of intrinsic sub-nanometer to nanometer scale defects in monolayer graphene grown on liquid Cu are no less than that in high-quality graphene synthesized via chemical vapor deposition (CVD) on solid Cu. Our work not only benchmarks quality of graphene grown on liquid copper for membrane applications but also provides fundamental insights into the origin of intrinsic defects in large-area graphene synthesized via bottom-up processes for membrane applications. 
    more » « less
  3. Abstract Graphene has been under intense scientific interest because of its remarkable optical, mechanical and electronic properties. Its honeycomb structure makes it an archetypical two-dimensional material exhibiting a photonic and phononic band gap with topologically protected states. Here, we assemble colloidal graphene, the analogue of atomic graphene using pseudo-trivalent patchy particles, allowing particle-scale insight into crystal growth and defect dynamics. We directly observe the formation and healing of common defects, like grain boundaries and vacancies using confocal microscopy. We identify a pentagonal defect motif that is kinetically favoured in the early stages of growth, and acts as seed for more extended defects in the later stages. We determine the conformational energy of the crystal from the bond saturation and bond angle distortions, and follow its evolution through the energy landscape upon defect rearrangement and healing. These direct observations reveal that the origins of the most common defects lie in the early stages of graphene assembly, where pentagons are kinetically favoured over the equilibrium hexagons of the honeycomb lattice, subsequently stabilized during further growth. Our results open the door to the assembly of complex 2D colloidal materials and investigation of their dynamical, mechanical and optical properties. 
    more » « less
  4. Large-scale and air-stable two-dimensional metal layers intercalated at the interface between epitaxial graphene and SiC offer an appealing material for quantum technology. The atomic and electronic details, as well as the control of the intercalated metals within the interface, however, remain very limited. In this Letter, we explored ultrathin indium confined between graphene and SiC using cryogenic scanning tunneling microscopy, complemented by first-principle density functional theory. Bias-dependent imaging and tunneling spectroscopy visualize a triangular superstructure with a periodicity of 14.7 ± 3 Å and an occupied state at about −1.6 eV, indicating proof of highly crystalline indium. The scanning tunneling microscopy tip was used to manipulate the number of indium layers below graphene, allowing to identify three monatomic In layers and to tune their corresponding electronic properties with atomic precision. This further allows us to attribute the observed triangular superstructure to be solely emerging from the In trilayer, tentatively explained by the lattice mismatch induced by lattice relaxation in the topmost In layer. Our findings provide a microscopic insight into the structure and electronic properties of intercalated metals within the graphene/SiC interface and a unique possibility to manipulate them with atomic precision using the scanning probe technique. 
    more » « less
  5. The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers. 
    more » « less