Abstract We report an observation of ultrahigh-energy (UHE) gamma rays from the Galactic center (GC) region, using 7 yr of data collected by the High-Altitude Water Cherenkov (HAWC) Observatory. The HAWC data are best described as a point-like source (HAWC J1746-2856) with a power-law spectrum ( ), whereγ= −2.88 ± 0.15stat− 0.1sysandϕ= 1.5 × 10−15(TeV cm2s)−1 extending from 6 to 114 TeV. We find no evidence of a spectral cutoff up to 100 TeV using HAWC data. Two known point-like gamma-ray sources are spatially coincident with the HAWC gamma-ray excess: Sgr A* (HESS J1745-290) and the Arc (HESS J1746-285). We subtract the known flux contribution of these point sources from the measured flux of HAWC J1746-2856 to exclude their contamination and show that the excess observed by HAWC remains significant (>5σ), with the spectrum extending to >100 TeV. Our result supports that these detected UHE gamma rays can originate via hadronic interaction of PeV cosmic-ray protons with the dense ambient gas and confirms the presence of a proton PeVatron at the GC. 
                        more » 
                        « less   
                    This content will become publicly available on July 10, 2026
                            
                            Orbital Modulation of Gamma Rays up to 100 TeV from LS 5039
                        
                    
    
            Abstract Gamma-ray binaries are luminous in gamma rays, composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of teraelectronvolts (TeV). However, it is still debated where and under which physical conditions particles are accelerated in these objects and ultimately whether protons can be accelerated up to PeV energies. Among the well-known gamma-ray binaries, LS 5039 is a high-mass X-ray binary with an orbital period of 3.9 days that has been observed up to TeV energies by the High Energy Stereoscopic System. We present new observations of LS 5039 obtained with the High Altitude Water Cherenkov (HAWC) observatory. Our data reveal that the gamma-ray spectrum of LS 5039 extends up to 200 TeV with no apparent spectral cutoff. Furthermore, we confirm, with a confidence level of 4.7σ, that the emission between 2 and 118 TeV is modulated by the orbital motion of the system, and find a 2.2σhint of variability above 100 TeV. This indicates that these photons are likely produced within or near the binary orbit, where they can undergo absorption by the stellar photons. In a leptonic scenario, the highest energy photons detected by HAWC can be emitted by ∼200 TeV electrons inverse Compton scattering stellar photons, which would require an extremely efficient acceleration mechanism operating within LS 5039. Alternatively, a hadronic scenario could explain the data through proton–proton or proton–gamma collisions of protons accelerated to petaelectronvolt energies. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10621689
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 987
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L42
- Subject(s) / Keyword(s):
- Gamma-ray observatories, Gamma-ray sources, High energy astrophysics, High mass x-ray binary stars, High Energy Astrophysical Phenomena
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Very-high-energy (0.1–100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σand in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites “e1” and “w1” for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power lawdN/dE∝Eαwith and for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated.more » « less
- 
            Abstract The Universe is filled with a diffuse background of MeV gamma-rays and PeV neutrinos, whose origins are unknown. Here, we propose a scenario that can account for both backgrounds simultaneously. Low-luminosity active galactic nuclei have hot accretion flows where thermal electrons naturally emit soft gamma rays via Comptonization of their synchrotron photons. Protons there can be accelerated via turbulence or reconnection, producing high-energy neutrinos via hadronic interactions. We demonstrate that our model can reproduce the gamma-ray and neutrino data. Combined with a contribution by hot coronae in luminous active galactic nuclei, these accretion flows can explain the keV – MeV photon and TeV – PeV neutrino backgrounds. This scenario can account for the MeV background without non-thermal electrons, suggesting a higher transition energy from the thermal to nonthermal Universe than expected. Our model is consistent with X-ray data of nearby objects, and testable by future MeV gamma-ray and high-energy neutrino detectors.more » « less
- 
            Abstract The detection of the hyper-bright gamma-ray burst (GRB) 221009A enables us to explore the nature of the GRB emission and the origin of very high-energy gamma rays. We analyze the Fermi Large Area Telescope (Fermi-LAT) data of this burst and investigate the GeV–TeV emission in the framework of the external reverse-shock model. We show that the early ∼1–10 GeV emission can be explained by the external inverse-Compton mechanism via upscattering MeV gamma rays by electrons accelerated at the reverse shock, in addition to the synchrotron self-Compton component. The predicted early optical flux could have been brighter than that of the naked-eye GRB 080319B. We also show that proton synchrotron emission from accelerated ultrahigh-energy cosmic rays (UHECRs) is detectable and could potentially explain ≳TeV photons detected by LHAASO or constrain the UHECR acceleration mechanism. Our model suggests that the detection of photons with energies up to ∼18 TeV is possible for reasonable models of the extragalactic background light without invoking new physics and predicts anticorrelations between MeV photons and TeV photons, which can be tested with the LHAASO data.more » « less
- 
            Context.Supernova remnants (SNRs) are believed to be capable of accelerating cosmic rays (CRs) to PeV energies. SNR G106.3+2.7 is a prime PeVatron candidate. It is formed by a head region, where the pulsar J2229+6114 and its boomerang-shaped pulsar wind nebula are located, and a tail region containing SN ejecta. The lack of observed gamma ray emission from the two regions of this SNR has made it difficult to assess which region would be responsible for the PeV CRs. Aims.We aim to characterize the very-high-energy (VHE, 0.1–100 TeV) gamma ray emission from SNR G106.3+2.7 by determining the morphology and spectral energy distribution of the region. This is accomplished using 2565 days of data and improved reconstruction algorithms from the High Altitude Water Cherenkov (HAWC) Observatory. We also explore possible gamma ray production mechanisms for different energy ranges. Methods.Using a multi-source fitting procedure based on a maximum-likelihood estimation method, we evaluate the complex nature of this region. We determine the morphology, spectrum, and energy range for the source found in the region. Molecular cloud information is also used to create a template and evaluate the HAWC gamma ray spectral properties at ultra-high-energies (UHE, > 56 TeV). This will help probe the hadronic nature of the highest-energy emission from the region. Results.We resolve one extended source coincident with all other gamma ray observations of the region. The emission reaches above 100 TeV and its preferred log-parabola shape in the spectrum shows a flux peak in the TeV range. The molecular cloud template fit on the higher energy data reveals that the SNR’s energy budget is fully capable of producing a purely hadronic source for UHE gamma rays. Conclusions.The HAWC observatory resolves one extended source between the head and the tail of SNR G106.3+2.7 in the VHE gamma ray regime. The template fit suggests the highest energy gamma rays could come from a hadronic origin. However, the leptonic scenario, or a combination of the two, cannot be excluded at this time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
