Multi-pattern matching is widely used in modern software for applications requiring high throughput such as protein search, network traffic inspection, virus or spam detection. Graphics Processor Units (GPUs) excel at executing massively parallel workloads. Regular expression (regex) matching is typically performed by simulating the execution of deterministic finite automata (DFAs) or nondeterministic finite automata (NFAs). The natural implementations of these automata simulation algorithms on GPUs are highly inefficient because they give rise to irregular memory access patterns. This paper presents HybridSA, a heterogeneous CPU-GPU parallel engine for multi-pattern matching. HybridSA uses bit parallelism to efficiently simulate NFAs on GPUs, thus reducing the number of memory accesses and increasing the throughput. Our bit-parallel algorithms extend the classical shift-and algorithm for string matching to a large class of regular expressions and reduce automata simulation to a small number of bitwise operations. We have developed a compiler to translate regular expressions into bit masks, perform optimizations, and choose the best algorithms to run on the GPU. The majority of the regular expressions are accelerated on the GPU, while the patterns that exhibit random memory accesses are executed on the CPU in parallel. We evaluate HybridSA against state-of-the-art CPU and GPU engines, as well as a hybrid combination of the two. HybridSA achieves between 4 and 60 times higher throughput than the state-of-the-art CPU engine and between 4 and 233 times better than the state-of-the-art GPU engine across a collection of real-world benchmarks.
more »
« less
This content will become publicly available on March 30, 2026
Optimizing Datalog for the GPU
Modern Datalog engines (e.g., LogicBlox, Soufflé, ddlog) enable their users to write declarative queries which com- pute recursive deductions over extensional facts, leaving high-performance operationalization (query planning, semi- naïve evaluation, and parallelization) to the engine. Such engines form the backbone of modern high-throughput ap- plications in static analysis, network monitoring, and social- media mining. In this paper, we present a methodology for implementing a modern in-memory Datalog engine on data center GPUs, allowing us to achieve significant (up to 45×) gains compared to Soufflé (a modern CPU-based en- gine) on context-sensitive points-to analysis of PostgreSQL. We present GPUlog, a Datalog engine backend that imple- ments iterated relational algebra kernels over a novel range- indexed data structure we call the hash-indexed sorted ar- ray (HISA). HISA combines the algorithmic benefits of in- cremental range-indexed relations with the raw computa- tion throughput of operations over dense data structures. Our experiments show that GPUlog is significantly faster than CPU-based Datalog engines while achieving a favorable memory footprint compared to contemporary GPU-based joins.
more »
« less
- Award ID(s):
- 2529911
- PAR ID:
- 10621791
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400706981
- Page Range / eLocation ID:
- 762 to 776
- Format(s):
- Medium: X
- Location:
- Rotterdam Netherlands
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The constant flux of data and queries alike has been pushing the boundaries of data analysis systems. The increasing size of raw data files has made data loading an expensive operation that delays the data-to-insight time. To alleviate the loading cost, in situ query processing systems operate directly over raw data and offer instant access to data. At the same time, analytical workloads have increasing number of queries. Typically, each query focuses on a constantly shifting—yet small—range. As a result, minimizing the workload latency requires the benefits of indexing in in situ query processing. In this paper, we present an online partitioning and indexing scheme, along with a partitioning and indexing tuner tailored for in situ querying engines. The proposed system design improves query execution time by taking into account user query patterns, to (i) partition raw data files logically and (ii) build lightweight partition-specific indexes for each partition. We build an in situ query engine called Slalom to showcase the impact of our design. Slalom employs adaptive partitioning and builds non-obtrusive indexes in different partitions on-the-fly based on lightweight query access pattern monitoring. As a result of its lightweight nature, Slalom achieves efficient query processing over raw data with minimal memory consumption. Our experimentation with both microbenchmarks and real-life workloads shows that Slalom outperforms state-of-the-art in situ engines and achieves comparable query response times with fully indexed DBMS, offering lower cumulative query execution times for query workloads with increasing size and unpredictable access patterns.more » « less
-
Log-Structured Merge trees (LSM trees) are increasingly used as the storage engines behind several data systems, frequently deployed in the cloud. Similar to other database architectures, LSM trees consider information about the expected workload (e.g., reads vs. writes, point vs. range queries) to optimize their performance via tuning. However, operating in a shared infrastructure like the cloud comes with workload uncertainty due to the fast-evolving nature of modern applications. Systems with static tuning discount the variability of such hybrid workloads and hence provide an inconsistent and overall suboptimal performance. To address this problem, we introduce Endure - a new paradigm for tuning LSM trees in the presence of workload uncertainty. Specifically, we focus on the impact of the choice of compaction policies, size ratio, and memory allocation on the overall performance. Endure considers a robust formulation of the throughput maximization problem and recommends a tuning that maximizes the worst-case throughput over the neighborhood of each expected workload. Additionally, an uncertainty tuning parameter controls the size of this neighborhood, thereby allowing the output tunings to be conservative or optimistic. Through both model-based and extensive experimental evaluations of Endure in the state-of-the-art LSM-based storage engine, RocksDB, we show that the robust tuning methodology consistently outperforms classical tuning strategies. The robust tunings output by Endure lead up to a 5X improvement in throughput in the presence of uncertainty. On the flip side, Endure tunings have negligible performance loss when the observed workload exactly matches the expected one.more » « less
-
There has been a growing interest in using GPU to accelerate data analytics due to its massive parallelism and high memory bandwidth. The main constraint of using GPU for data analytics is the limited capacity of GPU memory. Heterogeneous CPU-GPU query execution is a compelling approach to mitigate the limited GPU memory capacity and PCIe bandwidth. However, the design space of heterogeneous CPU-GPU query execution has not been fully explored. We aim to improve state-of-the-art CPU-GPU data analytics engine by optimizing data placement and heterogeneous query execution. First, we introduce a semantic-aware fine-grained caching policy which takes into account various aspects of the workload such as query semantics, data correlation, and query frequency when determining data placement between CPU and GPU. Second, we introduce a heterogeneous query executor which can fully exploit data in both CPU and GPU and coordinate query execution at a fine granularity. We integrate both solutions in Mordred, our novel hybrid CPU-GPU data analytics engine. Evaluation on the Star Schema Benchmark shows that the semantic-aware caching policy can outperform the best traditional caching policy by up to 3x. Compared to existing GPU DBMSs, Mordred can outperform by an order of magnitude.more » « less
-
In database and large-scale data analytics, recursive aggregate processing plays an important role, which is generally implemented under a framework of incremental computing and executed synchronously and/or asynchronously. We identify three barriers in existing recursive aggregate data processing. First, the processing scope is largely limited to monotonic programs. Second, checking on conditions for monotonicity and correctness for async processing is sophisticated and manually done. Third, execution engines may be suboptimal due to separation of sync and async execution. In this paper, we lay an analytical foundation for conditions to check if a recursive aggregate program that is monotonic or even non-monotonic can be executed incrementally and asynchronously with its correct result. We design and implement a condition verification tool that can automatically check if a given program satisfies the conditions. We further propose a unified sync-async engine to execute these programs for high performance. To integrate all these effective methods together, we have developed a distributed Datalog system, called PowerLog. Our evaluation shows that PowerLog can outperform three representative Datalog systems on both monotonic and non-monotonic recursive programs.more » « less
An official website of the United States government
