skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Origin of Dust Structures in Protoplanetary Disks: Constraints from the Rossby Wave Instability
Abstract High-resolution submillimeter observations of protoplanetary disks with ALMA have revealed that dust rings are common in large, bright disks. The leading explanation for these structures is dust trapping in a local gas pressure maximum, caused by an embedded planet or other dynamical process. Independent of origin, such dust traps should be stable for many orbits to collect significant dust. However, ringlike perturbations in gas disks are also known to trigger the Rossby wave instability (RWI). We investigate whether axisymmetric pressure bumps can simultaneously trap dust and remain stable to the RWI. The answer depends on the thermodynamic properties of pressure bumps. For isothermal bumps, dust traps are RWI stable for widths from ∼1 to several gas scale heights. Adiabatic dust traps are stable over a smaller range of widths. For temperature bumps with no surface density component, however, all dust traps tend to be unstable. Smaller values of disk aspect ratio allow stable dust trapping at lower bump amplitudes and over a larger range of widths. We also report a new approximate criterion for RWI. Instability occurs when the radial oscillation frequency is ≲75% of the Keplerian frequency, which differs from the well-known Lovelace necessary (but not sufficient) criterion for instability. Our results can guide ALMA observations of molecular gas by constraining the resolution and sensitivity needed to identify the pressure bumps thought to be responsible for dust rings.  more » « less
Award ID(s):
2007422
PAR ID:
10621851
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
946
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radio images of protoplanetary disks demonstrate that dust grains tend to organize themselves into rings. These rings may be a consequence of dust trapping within gas pressure maxima, wherein the local high dust-to-gas ratio is expected to trigger the formation of planetesimals and eventually planets. We revisit the behavior of dust near gas pressure perturbations enforced by a planet in two-dimensional, shearing-box simulations. While dust grains collect into generally long-lived rings, particles with a small Stokes parameter τ s < 0.1 tend to advect out of the ring within a few drift timescales. Scaled to the properties of ALMA disks, we find that rings composed of larger particles ( τ s ≥ 0.1) can nucleate a dust clump massive enough to trigger pebble accretion, which proceeds to ingest the entire dust ring well within ∼1 Myr. To ensure the survival of the dust rings, we favor a nonplanetary origin and typical grain size τ s ≲ 0.05–0.1. Planet-driven rings may still be possible but if so we would expect the orbital distance of the dust rings to be larger for older systems. 
    more » « less
  2. Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) large program AGE-PRO explores protoplanetary disk evolution by studying gas and dust across various ages. This work focuses on 10 evolved disks in Upper Scorpius, observed in dust continuum emission, CO and its isotopologues, and N2H+with ALMA Bands 6 and 7. Disk radii, from the radial location enclosing 68% of the flux, are comparable to those in the younger Lupus region for both gas and dust tracers. However, solid masses are about an order of magnitude below those in Lupus and Ophiuchus, while the dust spectral index suggests some level of dust evolution. These empirical findings align with a combination of radial drift, dust trapping, and grain growth into larger bodies. A moderate correlation between CO and continuum fluxes suggests a link between gas and dust content, through the increased scatter compared to younger regions, possibly due to age variations, gas-to-dust ratio differences, or CO depletion. Additionally, the correlation between C18O and N2H+fluxes observed in Lupus persists in Upper Scorpius, indicating a relatively stable CO gas abundance over the Class II stage of disk evolution. In conclusion, the AGE-PRO survey of Upper Scorpius disks reveals intriguing trends in disk evolution. The findings point toward potential gas evolution and the presence of dust traps in these older disks. Future high-resolution observations are needed to confirm these possibilities and further refine our understanding of disk evolution and planet formation in older environments. 
    more » « less
  3. We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines. 
    more » « less
  4. Abstract The Rossby wave instability (RWI) is the fundamental nonaxisymmetric radial shear instability in disks. The RWI can facilitate disk accretion, set the shape of planetary gaps, and produce large vortices. It arises from density and/or temperature features, such as radial gaps, bumps, or steps. A general, sufficient condition to trigger the RWI is lacking, which we address by studying the linear RWI in a suite of simplified models, including incompressible and compressible shearing sheets and global, cylindrical disks. We focus on enthalpy amplitude and width as the fundamental properties of disk features with various shapes. We find analytic results for the RWI boundary and growth rates across a wide parameter space, in some cases with exact derivations and in others as a description of numerical results. Features wider than a scale height generally become unstable about halfway to Rayleigh instability, i.e., when the squared epicyclic frequency is about half the Keplerian value, reinforcing our previous finding. RWI growth rates approximately scale as enthalpy amplitude to the 1/3 power, with a weak dependence on width, across much of the parameter space. Global disk curvature affects wide planetary gaps, making the outer gap edge more susceptible to the RWI. Our simplified models are barotropic and height integrated, but the main results should carry over to more complex and realistic scenarios. 
    more » « less
  5. Abstract The filamentary nature of accretion streams found around embedded sources suggests that protostellar disks experience heterogenous infall from the star-forming environment, consistent with the accretion behavior onto star-forming cores in top-down star-cluster formation simulations. This may produce disk substructures in the form of rings, gaps, and spirals that continue to be identified by high-resolution imaging surveys in both embedded Class 0/I and later Class II sources. We present a parameter study of anisotropic infall, informed by the properties of accretion flows onto protostellar cores in numerical simulations, and varying the relative specific angular momentum of incoming flows as well as their flow geometry. Our results show that anisotropic infall perturbs the disk and readily launches the Rossby wave instability. It forms vortices at the inner and outer edges of the infall zone where material is deposited. These vortices drive spiral waves and angular momentum transport, with some models able to drive stresses corresponding to a viscosity parameter on the order ofα∼ 10−2. The resulting azimuthal shear forms robust pressure bumps that act as barriers to radial drift of dust grains, as demonstrated by postprocessing calculations of drift-dominated dust evolution. We discuss how a self-consistent model of anisotropic infall can account for the formation of millimeter rings in the outer disk as well as producing compact dust disks, consistent with observations of embedded sources. 
    more » « less