skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 29, 2026

Title: Cybersecurity in Smart Homes: User Awareness and Security Practices
This report will discuss and analyze the risks and challenges associated with smart home devices, focusing on vulnerabilities in commonly used products such as smart speakers, security cameras, thermostats, and lighting systems. As the adoption of smart home security grows globally, it has become clear that many users remain unaware of the associated security risks, leading to data breaches and potential privacy violations. This research evaluates the security features of these devices, the frequency of breaches, and common vulnerabilities. Using a mixed-methods approach—including a user survey, analysis of past cybersecurity incidents, and a detailed review of existing literature—this study assesses the current state of smart home device security. The findings aim to highlight gaps in user awareness, evaluate manufacturers’ protective measures, and provide recommendations for improving cybersecurity practices in smart home environments.  more » « less
Award ID(s):
1754054
PAR ID:
10623601
Author(s) / Creator(s):
;
Publisher / Repository:
The 2025 ADMI Symposium.
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet of Medical Things (IoMT) is a network of interconnected medical devices, wearables, and sensors integrated into healthcare systems. It enables real-time data collection and transmission using smart medical devices with trackers and sensors. IoMT offers various benefits to healthcare, including remote patient monitoring, improved precision, and personalized medicine, enhanced healthcare efficiency, cost savings, and advancements in telemedicine. However, with the increasing adoption of IoMT, securing sensitive medical data becomes crucial due to potential risks such as data privacy breaches, compromised health information integrity, and cybersecurity threats to patient information. It is necessary to consider existing security mechanisms and protocols and identify vulnerabilities. The main objectives of this paper aim to identify specific threats, analyze the effectiveness of security measures, and provide a solution to protect sensitive medical data. In this paper, we propose an innovative approach to enhance security management for sensitive medical data using blockchain technology and smart contracts within the IoMT ecosystem. The proposed system aims to provide a decentralized and tamper-resistant plat- form that ensures data integrity, confidentiality, and controlled access. By integrating blockchain into the IoMT infrastructure, healthcare organizations can significantly enhance the security and privacy of sensitive medical data. 
    more » « less
  2. The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis. 
    more » « less
  3. The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis. 
    more » « less
  4. Smart home IoT devices are becoming increasingly popular. Modern programmable smart home hubs such as SmartThings enable homeowners to manage devices in sophisticated ways to save energy, improve security, and provide conveniences. Unfortunately, many smart home systems contain vulnerabilities, potentially impacting home security and privacy. This paper presents Vigilia, a system that shrinks the attack surface of smart home IoT systems by restricting the network access of devices. As existing smart home systems are closed, we have created an open implementation of a similar programming and configuration model in Vigilia and extended the execution environment to maximally restrict communications by instantiating device-based network permissions. We have implemented and compared Vigilia with forefront IoT-defense systems; our results demonstrate that Vigilia outperforms these systems and incurs negligible overhead. 
    more » « less
  5. With 'smart' technology becoming more prevalent in homes, computing is increasingly embedded into everyday life. The benefits are well-advertised, but the risks associated with these technologies are not as clearly articulated. We aim to address this gap by educating community members on some of these risks, and providing actionable advice to mitigate risks. To this end, we describe our efforts to design and implement a hands-on workshop for the public on smart-home security and privacy. Our workshop curriculum centers on the smart-home device lifecycle: obtaining, installing, using, and removing devices in a home. For each phase of the lifecycle, we present possible vulnerabilities along with preventative measures relevant to a general audience. We integrate a hands-on activity for participants to put best-practices into action throughout the presentation. We ran our workshop at a science museum in June 2023, and we used participant surveys to evaluate the effectiveness of our curriculum. Prior to the workshop, 38.8% of survey responses did not meet learning objectives, 22.4% partially met them, and 38.8% fully met them. After the workshop, only 9.2% of responses did not meet learning objectives, while 29.6% partially met them and 61.2% fully met them. Our experience shows that consumer-focused workshops can aid in bridging information gaps and are a promising form of outreach. 
    more » « less