skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Ricci Curvature and Fundamental Groups of Effective Regular Sets
For a Gromov-Hausdorff convergent sequence of closed manifolds $$M_i^n\ghto X$$ with $$\Ric\ge-(n-1)$$, $$ \mathrm{diam}(M_i)\le D$$, and $$\mathrm{vol}(M_i)\ge v>0,$$ we study the relation between $$\pi_1(M_i)$$ and $$X$$. It was known before that there is a surjective homomorphism $$\phi_i:\pi_1(M_i)\to \pi_1(X)$$ by the work of Pan--Wei. In this paper, we construct a surjective homomorphism $$\psi_i$$ from the interior of the effective regular set in $$X$$ back to $$M_i$$. These surjective homomorphisms $$\phi_i$$ and $$\psi_i$$ are natural in the sense that their composition $$\phi_i \circ \psi_i$$ is exactly the homomorphism induced by the inclusion map from the effective regular set to $$X$$.  more » « less
Award ID(s):
2304698
PAR ID:
10623648
Author(s) / Creator(s):
Publisher / Repository:
Global Science Press
Date Published:
Journal Name:
Journal of Mathematical Study
Volume:
58
Issue:
1
ISSN:
2096-9856
Page Range / eLocation ID:
3 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The elliptic algebras in the title are connected graded $$\mathbb {C}$$ -algebras, denoted $$Q_{n,k}(E,\tau )$$ , depending on a pair of relatively prime integers $$n>k\ge 1$$ , an elliptic curve E and a point $$\tau \in E$$ . This paper examines a canonical homomorphism from $$Q_{n,k}(E,\tau )$$ to the twisted homogeneous coordinate ring $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ on the characteristic variety $$X_{n/k}$$ for $$Q_{n,k}(E,\tau )$$ . When $$X_{n/k}$$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ is surjective, the relations for $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ are generated in degrees $$\le 3$$ and the noncommutative scheme $$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $$X_{n/k}=E^g$$ and $$\tau =0$$ , the results about $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ show that the morphism $$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces. 
    more » « less
  2. Suppose f ∈ K [ x ] f \in K[x] is a polynomial. The absolute Galois group of K K acts on the preimage tree T \mathrm {T} of 0 0 under f f . The resulting homomorphism ϕ f : Gal K → Aut ⁡ T \phi _f\colon \operatorname {Gal}_K \to \operatorname {Aut} \mathrm {T} is called the arboreal Galois representation. Odoni conjectured that for all Hilbertian fields K K there exists a polynomial f f for which ϕ f \phi _f is surjective. We show that this conjecture is false. 
    more » « less
  3. Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X . 
    more » « less
  4. null (Ed.)
    For integers $$n\ge 0$$, an iterated triangulation $$\mathrm{Tr}(n)$$ is defined recursively as follows: $$\mathrm{Tr}(0)$$ is the plane triangulation on three vertices and, for $$n\ge 1$$, $$\mathrm{Tr}(n)$$ is the plane triangulation obtained from the plane triangulation $$\mathrm{Tr}(n-1)$$ by, for each inner face $$F$$ of $$\mathrm{Tr}(n-1)$$, adding inside $$F$$ a new vertex and three edges joining this new vertex to the three vertices incident with $$F$$. In this paper, we show that there exists a 2-edge-coloring of $$\mathrm{Tr}(n)$$ such that $$\mathrm{Tr}(n)$$ contains no monochromatic copy of the cycle $$C_k$$ for any $$k\ge 5$$. As a consequence, the answer to one of two questions asked by Axenovich et al. is negative. We also determine the radius 2 graphs $$H$$ for which there exists $$n$$ such that every 2-edge-coloring of $$\mathrm{Tr}(n)$$ contains a monochromatic copy of $$H$$, extending a result of Axenovich et al. for radius 2 trees. 
    more » « less
  5. Abstract Let $${\mathrm{Diff}}_{0}(N)$$ represent the subgroup of diffeomorphisms that are homotopic to the identity. We show that if $$N$$ is a closed hyperbolic 4-manifold, then $$\pi _{0}{\mathrm{Diff}}_{0}(N)$$ is not finitely generated with similar results holding topologically. This proves in dimension-4 results previously known for $$n$$-dimensional hyperbolic manifolds of dimension $$n\ge 11$$ by Farrell and Jones in 1989 and $$n\ge 10$$ by Farrell and Ontaneda in 2010. Our proof relies on the technical result that $$\pi _{0}{\mathrm{Homeo}}(S^{1}\times D^{3})$$ is not finitely generated, which extends to the topological category smooth results of the authors. We also show that $$\pi _{n-4} {\mathrm{Homeo}}(S^{1} \times D^{n-1})$$ is not finitely generated for $$n \geq 4$$ and in particular $$\pi _{0}{\mathrm{Homeo}}(S^{1}\times D^{3})$$ is not finitely generated. These results are new for $n=4, 5$ and $$7$$. We also introduce higher dimensional barbell maps and establish some of their basic properties. 
    more » « less